摘要
随着硅团簇研究的深入,过渡金属原子掺杂硅团簇的研究得到广泛关注。基于密度泛函理论,系统分析了钒原子掺杂硅团簇的几何结构、稳定性及特性。首先,基于粒子群优化算法的卡里普索结构预测程序,对(n=8~17)团簇的基态和亚稳态结构进行了系统搜索。B3LYP/6-311+G(d)水平下优化发现,基态结构中2个钒原子的掺杂引起了原硅团簇结构的重构;随着掺杂体系尺寸增大,2个钒原子(形成V-V键)逐渐被硅笼包裹。其次,以此结构为基础,通过分析平均键能、二阶能量差分和HOMO-LUMO能隙,研究了体系的稳定性。结果表明,团簇在各自体系中具有相对高的稳定性。此外,磁性分析发现,闭壳层V2Sin (n=8~17)体系的总自旋磁矩均为零,开壳层 (n=8~17)体系分别拥有1 μB的总磁矩。分析极化率发现,拥有最大的平均极化率,具有强的非线性光学效应。拟合得到的光电子能谱、红外和拉曼光谱为进一步的实验研究提供了理论支持。热力学特性分析表明,研究体系在热力学上是稳定的。随着温度升高,定容热容和标准熵逐渐增大;随着压强增大,标准熵逐渐减小。
位居第IVA族的硅原子s
双原子掺杂硅团簇后的结构和电子特性会如何变化呢?在B3LYP/LANL2DZ水平下,Han
在前期工作基础上,笔者增大了研究对象的尺寸范围,同时考虑电荷影响,利用卡里普索结构预测程序和密度泛函理论,搜索了不同电荷下V2Sin (n=8~17)团簇的基态和亚稳态结构。基于基态结构,分析了不同尺寸下团簇的相对稳定性,研究了掺杂体系的磁性和极化率,拟合出了光电子能谱、红外和拉曼光谱,讨论了体系的热力学特性,以及温度、压强对热力学参数的影响。
本研究中的计算均在Gaussian 09程序下进
泛函数 | r/pm | ω/c | VIP/eV | De/eV | VRMS | ||||
---|---|---|---|---|---|---|---|---|---|
Si2 | V2 | VSi | Si2 | VSi | Si2 | V2 | V2 | VSi | |
B3PW91 | 215.7 | 170.0 | 226.8 | 555.0 | 319.2 | 7.9 | 6.1 | 3.0 | 0.051 1 |
BPW91 | 217.7 | 174.0 | 219.2 | 530.6 | 372.9 | 7.9 | 6.2 | 3.2 | 0.064 7 |
BP86 | 217.9 | 174.0 | 217.6 | 527.0 | 390.0 | 8.0 | 6.5 | 3.3 | 0.081 2 |
BLYP | 219.2 | 176.0 | 233.8 | 509.9 | 342.0 | 7.7 | 6.3 | 3.1 | 0.038 6 |
B3LYP | 228.1 | 171.0 | 225.8 | 485.5 | 324.7 | 7.9 | 6.3 | 3.1 | 0.035 1 |
B3P86 | 215.4 | 170.0 | 224.7 | 557.3 | 330.8 | 8.5 | 6.7 | 3.1 | 0.056 0 |
PW91 | 217.5 | 174.0 | 218.2 | 531.8 | 382.7 | 7.9 | 6.3 | 3.3 | 0.074 2 |
TPSSH | 215.9 | 172.0 | 223.6 | 550.9 | 338.4 | 7.9 | 6.0 | 3.1 | 0.051 1 |
PBE | 217.7 | 174.0 | 218.6 | 531.7 | 381.6 | 6.7 | 6.3 | 3.3 | 0.089 4 |
PBE0 | 215.3 | 169.1 | 228.5 | 562.4 | 315.9 | 7.9 | 6.0 | 3.3 | 0.046 9 |
Ex | 224.6 | 175.7 | 237.9 | 511.0 | 323.0 | 7.9 | 6.4 | 3.3 |
对比发现,不同泛函下的键长、频率、VIP和De的计算值和实验值各有偏差,为了确定适合本研究的最佳泛函,计算了每个泛函下参数实验值和计算值的最小均方根(root mean square,RMS)值VRMS:
。 | (1) |
式中:χexpt、χcalc分别表示键长、频率、垂直电离能和离解能等物理量的实验值和计算值;m表示计算的不同泛函数量。
结果发现,B3LYP泛函拥有最小的VRMS。因此,B3LYP泛函可以应用到对过渡金属钒掺杂硅团簇的结构和电子特性的研究中。需要注意的是,该泛函的合理性已被其他科研工作者验

图1 (n=8~17)团簇的基态和亚稳态结构、点群对称,B3LYP/6-311+G(d)和CCSD(T)/aug-cc-PVDZ//B3LYP/6-311+G(d)水平下的相对能量
Fig. 1 The lowest and low-lying structures of (n=8~17) clusters along with the point group symmetry and relative energy at the B3LYP/6-311+G(d) and CCSD(T)/aug-cc-PVDZ//B3LYP/6-311+G(d) levels, respectively
基于上节中的卡利普索结构预测程序,在B3LYP/6-311+G(d)水平下对 (n=8~17)团簇的几何结构进行了优化,优化后的基态和亚稳态结构见
确定了 (n=8~17)团簇的基态构型后,通过计算平均键能(average binding energy)Eb、二阶能量差分(second order energy difference)
(2) |
式中,E为对应原子的能量。

图2 基态团簇的平均键能、二阶差分能和HOMO-LUMO 能隙随尺寸变化
Fig. 2 Size dependence of the average binding energies, the second-order energy differences and HOMO-LUMO gaps
本节中,基于B3LYP泛函和6-311+G(d)全电子基组对磁学特性进行了分析讨论。轨道的电子占据数由Mulliken布局分析得到,磁矩可由自旋向上态(α)和自旋向下态(β)电子占据数之差获得。对于V2Sin (n=8~17)团簇,布局分析发现,所有尺寸的团簇都没有单电子占据分子轨道,每个团簇(n=8~17)拥有的分子轨道数分别为79、88、93、100、107、114、121、128、135和142,每个轨道上填充2个电子,即所有电子两两配对,电子轨道排布形成闭壳层,总自旋磁矩为零,即发生了“磁矩猝灭”现象。因此,V2Sin (n=8~17)团簇不具有磁性。对于 (n=8~17)体系,从其轨道布局可以发现,电子占据不同的α和β轨道,对应n=8~17,α和β轨道电子占据数分别为(80, 79)(87, 86)(94, 93)(101, 100)(108, 107)(115, 114)(122, 121)(129, 128)(136, 135)和(143, 142)。对比发现,电子在α轨道上的占据数比在β轨道上的多了一个,每个轨道对应一个玻尔磁子。因此,(n=8~17)体系分别具有1 μB的总磁矩。

图3 (n=8~17)团簇基态中V和Si原子的局域自旋磁矩
Fig. 3 Local spin magnetic moments of V and Si atoms for the lowest energy structures of (n=8~17) clusters
为了考查(n=8~17)团簇对外场的响应,计算了平均极化率和各向异性极化率Δα,公式为
(3) |
式中:N为团簇的总原子数(团簇的尺寸);、、、、和分别为张量对角元,具体计算结果见
n | ||||
---|---|---|---|---|
V2Sin | V2Sin | |||
8 | 38.42 | 46.02 | 78.59 | 126.69 |
9 | 38.30 | 42.36 | 64.86 | 31.34 |
10 | 34.81 | 39.64 | 44.57 | 48.21 |
11 | 35.49 | 40.04 | 53.94 | 71.82 |
12 | 33.03 | 36.19 | 72.11 | 83.09 |
13 | 33.59 | 36.21 | 59.31 | 83.62 |
14 | 33.19 | 36.85 | 96.75 | 12.34 |
15 | 33.17 | 36.61 | 114.39 | 125.86 |
16 | 33.15 | 37.01 | 114.36 | 117.99 |
17 | 33.25 | 36.38 | 174.58 | 196.57 |
利用Multiwfn软件拟合出了(n=8~17)团簇的光电子能谱(

图4 拟合 (n=8~17)团簇基态结构的光电子能谱
Fig. 4 Simulated PES spectra for the lowest energy structures of (n=8~17) clusters
根据搜索得到的基态结构,计算拟合出了(n=8~17)团簇的红外和拉曼光谱(

图5 拟合(n=8~17)基态结构的红外(IR)和拉曼(Raman)光谱
Fig. 5 Simulated IR and Raman spectra for the lowest energy structures of (n=8~17) clusters
体系的红外和拉曼光谱拥有多个振动峰,其特征峰主要集中在低频区0~550 c
标准生成焓是衡量其热力学稳定性的一个重要参数,当标准生成焓为负值时,说明反应过程是放热反应,热力学上是稳定的。在标准大气压和温度下,计算了 (n=8~17)团簇的标准生成焓。
。 | (4) |
计算结果如
n | /eV | n | /eV | |||
---|---|---|---|---|---|---|
V2Sin | V2Sin | |||||
8 | -29.91 | -21.94 | 13 | -48.94 | -34.53 | |
9 | -33.35 | -24.56 | 14 | -52.26 | -36.78 | |
10 | -37.56 | -26.96 | 15 | -55.32 | -38.77 | |
11 | -41.18 | -29.34 | 16 | -58.95 | -41.13 | |
12 | -45.59 | -32.53 | 17 | -62.15 | -42.85 |
为了探究温度和压强对热力学参数定容热容Cv(单位:J/(mol·K))和标准熵S(单位:J/(mol·K))的影响,分别计算了不同温度下的热力学参数,具体计算结果见

图6 (n=8~17)团簇基态的热力学参数(Cv和S)随温度T变化曲线
Fig. 6 Temperature dependence of Cv and S for the lowest energy structures of (n=8~17) clusters
以V2Si8和为例,Cv和T之间的函数关系如下:
(5) |
式中,
S和T之间的函数关系如下:
(6) |
计算了不同大气压(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8 MPa)下,压强P和标准熵S之间的关系。从
(7) |

图7 (n=8~17)团簇基态的标准熵S随压强P变化曲线
Fig. 7 Pressure dependence of S for the lowest energy structures of clusters
运用卡里普索结构预测程序和密度泛函理论,在B3LYP/6-311+G(d)水平下,系统研究了 (n=8~17)团簇的几何结构、稳定性和电子、光谱和热力学特性。结构搜索发现,掺杂体系呈现笼式结构,对于小尺寸体系,一个V原子位于表面,另一个V原子位于笼的内部;随着体系的增大,2个V原子逐渐被硅笼包裹。V2Sin (n≥11)团簇的稳定性大于对应纯硅团簇的稳定性; (n≥12)团簇的稳定性大于对应纯硅团簇的稳定性。分析平均键能、二阶差分能和HOMO-LUMO能隙发现,团簇在各自体系中具有相对高的稳定性。磁性分析发现,由于α和β的电子数目相同,闭壳层V2Sin (n=8~17)体系的总自旋磁矩均为零。对于开壳层 (n=8~17)体系,由于电子占据不同的α和β轨道,使得每个体系分别具有1 μB的总磁矩。极化率分析发现,易被外加场极化的拥有最大的平均极化率,具有强的非线性光学效应;非线性光学效应弱的团簇具有最小的平均极化率。热力学性质分析表明,研究体系在热力学上都是稳定的。随着温度的升高,定容热容和标准熵逐渐增大;随着压强的增大,标准熵逐渐减小。温度和定容热容之间存在近似二次函数关系,温度与压强和定容热容之间存在近似线性关系。
参考文献
Zhao Y R, Bai T T, Jia L N, et al. Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters[J]. The Journal of Physical Chemistry C, 2019, 123(47): 28561-28568. [百度学术]
Khanna V, Singh R, Claes P, et al. Evolution of vibrational spectra in the manganese-silicon clusters Mn2Sin, n = 10, 12, and 13, and cationic[Mn2Si13]+[J]. The Journal of Physical Chemistry A, 2022, 126(10): 1617-1626. [百度学术]
石胜云, 温良英, 曹娇, 等. CO和Cl2在TiO2(110)表面的吸附行为[J]. 重庆大学学报, 2019, 42(8): 50-58. [百度学术]
Shi S Y, Wen L Y, Cao J, et al. Adsorption of both CO and Cl2 on TiO2(110) surface[J]. Journal of Chongqing University, 2019, 42(8): 50-58.(in Chinese) [百度学术]
Zhu B C, Zhang S, Zeng L. The effect of silicon doping on the geometrical structures, stability, and electronic and spectral properties of magnesium clusters: DFT study of SiMgn (n = 1-12) clusters[J]. International Journal of Quantum Chemistry, 2020, 120(10): e26143. [百度学术]
柳杨璐, 刘婷婷, 潘复生. 基于第一性原理的镁合金合金相及固溶体研究进展[J]. 重庆大学学报, 2018, 41(10): 30-44. [百度学术]
Liu Y L, Liu T T, Pan F S. Research progress on intermetallic compounds and solid solutions of Mg alloys based on first-principles calculation[J]. Journal of Chongqing University, 2018, 41(10): 30-44.(in Chinese) [百度学术]
Scherer J J, Paul J B, Collier C P. Cavity ringdown laser absorption spectroscopy and time-of-flight mass spectroscopy of jet-cooled copper silicides[J]. The Journal of Chemical Physics, 1995, 102: 5190. [百度学术]
Hiura H, Miyazaki T, Kanayama T. Formation of metal-encapsulating Si cage clusters[J]. Physical Review Letters, 2001, 86(9): 1733-1736. [百度学术]
Xiao C Y, Hagelberg F, Lester W A. Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters[J]. Physical Review B, 2002, 66(7): 075425. [百度学术]
Guo L J, Zhao G F, Gu Y Z, et al. Density functional investigation of metal-silicon cage clusters MSin (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n=8-16) [J]. Physical Review B, 2008, 77: 195417. [百度学术]
Kawamura H, Kumar V, Kawazoe Y. Growth, magic behavior, and electronic and vibrational properties of Cr-doped Si clusters[J]. Physical Review B, 2004, 70(24): 245433. [百度学术]
Kawamura H, Kumar V, Kawazoe Y. Growth behavior of metal-doped silicon clusters SinM (M=Ti, Zr, Hf; n=8-16) [J]. Physical Review B, 2005, 71: 075423. [百度学术]
Torres M B, Fernandez E M, Balbas C, Theoretical study of isoelectronic SinM clsuter (M=S
Li Y J, Lyon J T, Woodham A P, et al. The geometric structure of silver-doped silicon clusters[J]. ChemPhysChem, 2014, 15(2): 328-336. [百度学术]
Claes P, Ngan V T, Haertelt M, et al. The structures of neutral transition metal doped silicon clusters, SinX (n=6-9; X=V, Mn) [J]. The Journal of Chemical Physics, 2013, 138: 194301. [百度学术]
Guo L J, Liu X, Zhao G F. Computational investigation of TiSi𝑛 (𝑛=2-15) clusters by the density-functional theory[J].The Journal of Chemical Physics, 2007, 126: 234704. [百度学术]
Wang J G, Zhao J J, Ma L, et al. Structure and magnetic properties of cobalt doped Sin (n=2-14) clusters[J]. Physics Letters A, 2007, 367(4/5): 335-344. [百度学术]
Wang J, Liu Y, Li Y C. Au@Sin: growth behavior, stability and electronic structure[J]. Physics Letters A, 2010, 374(27): 2736-2742. [百度学术]
Xu H G, Wu M M, Zhang Z G, et al. Photoelectron spectroscopy and density functional calculations of CuSi (n=4-18) clusters[J]. The Journal of Chemical Physics, 2012, 136: 104308. [百度学术]
Kong X Y, Xu H G, Zheng W J. Structures and magnetic properties of CrSi (n=3-12) clusters: photoelectron spectroscopy and density functional calculations[J]. The Journal of Chemical Physics, 2012, 137(6): 064307. [百度学术]
Han J G, Zhao R N, Duan Y H. Geometries, stabilities, and growth patterns of the bimetal Mo2-doped Sin (n=9-16) clusters: a density functional investigation[J]. The Journal of Physical Chemistry A, 2007, 111(11): 2148-2155. [百度学术]
Ji X X, Li J, Wang C, et al. Geometries, stabilities and electronic properties of small sized Pd2-doped Sin (n=1-11) clusters[J]. Molecular Physics, 2015, 113(22): 3567-3577. [百度学术]
Zhang S, Zhang Y, Yang X Q, et al. Systematic theoretical investigation of structures, stabilities, and electronic properties of rhodium-doped silicon clusters: Rh2Si (n=1-10; q=0, ±1) [J]. Journal of Materials Science, 2015, 50(18): 6180-6196. [百度学术]
Ji W X, Luo C L. Structures, magnetic properties, and electronic counting rule of metals-encapsulated cage-like M2Si18 (M=Ti-Zn) clusters[J]. International Journal of Quantum Chemistry, 2012, 112(12): 2525-2531. [百度学术]
Ji W X, Luo C L. Density-functional investigation of hexagonal prism transition-metal-encapsulated cage M2Si18 (M=Sc-Zn) clusters[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(2): 025011. [百度学术]
Robles R, Khanna S N, JrCastleman A W. Stability and magnetic properties of T2Sin (T=Cr, Mn, 1≤n≤8) clusters[J]. Physical Review B, 2008, 77(23): 235441. [百度学术]
Robles R, Khanna S N. Stable T2Sin (T=Fe, Co, Ni, 1≤n≤8) cluster motifs[J]. The Journal of Chemical Physics, 2009, 130(16): 164313. [百度学术]
Xu H G, Zhang Z G, Feng Y, et al. Vanadium-doped small silicon clusters: photoelectron spectroscopy and density-functional calculations[J]. Chemical Physics Letters, 2010, 487(4/5/6): 204-208. [百度学术]
Xu H G, Kong X Y, Deng X J, et al. Smallest fullerene-like silicon cage stabilized by a V2 unit[J]. The Journal of Chemical Physics, 2014, 140(2): 024308. [百度学术]
Lu J, Lu Q H, Li X J. Study on the growth patterns and simulated photoelectron spectroscopy of double vanadium atoms doped silicon clusters V2Sin (n≤ 12) and their anions[J]. Molecular Physics, 2021, 119(7): e1864042. [百度学术]
Li C G, Chen W G, Cui Y Q, et al. Structures, stabilities and electronic properties of the bimetal V2-doped Sin (n=1-10) clusters: a density functional investigation[J]. The European Physical Journal D, 2020, 74(6): 111. [百度学术]
Frisch G M J, Trucks W, Schlegel H, et al. Gaussian 09, revision A. 1; Gaussian[M]. New York: Gaussian Incorporated, 2009. [百度学术]
Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization[J]. Physical Review B, 2010, 82(9): 094116. [百度学术]
Wang Y C, Lv J, Zhu L, et al. CALYPSO: a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10): 2063-2070. [百度学术]
Wang Y C, Miao M S, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm[J]. Journal of Chemical Physics, 2012, 137(22): 224108. [百度学术]
Li C G, Cui Y Q, Tian H, et al. Quantum chemistry study on the structures and electronic properties of bimetallic Ca2-doped magnesium Ca2Mgn (n=1-15) clusters[J]. Nanomaterials, 2022, 12(10): 1654. [百度学术]
Li C G, Li H J, Cui Y Q, et al. A density functional investigation on the structures, electronic, spectral and fluxional properties of cluster[J]. Journal of Molecular Liquids, 2021, 339: 116764. [百度学术]
Li C G, Cui Y Q, Li J X, et al. Probing the structural, electronic and spectral properties of a cluster[J]. Molecular Physics, 2021, 119(10): 1910744. [百度学术]
Becke A D. Density-functional thermochemistry. III: the role of exact exchange[J]. Journal of chemical physics, 1993, 98(7): 5648-5652. [百度学术]
Krishnan R, Binkley J S, Seeger R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. The Journal of Chemical Physics,1980, 72(1): 650-654. [百度学术]
Neese F. The ORCA program system[J]. WIREs Computational Molecular Science, 2012, 2(1):73-78. [百度学术]
Spain E M, Behm J M, Morse M D. The 846 nm A'
Winstead C B, Paukstis S J, Gole J L. Spectroscopy of the
Huber K P, Herzberg G. Constants of diatomic molecules[M]// Molecular Spectra and Molecular Structure. Boston, MA: Springer, 1979: 8-689. [百度学术]
James A M, Kowalczyk P, Langlois E, et al. Resonant two photon ionization spectroscopy of the molecules V2, VNb, and Nb2[J].Journal of Chemical Physics, 1994, 101(6): 4485-4495. [百度学术]
Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [百度学术]