网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

潮湿环境下露天石质文物盐致劣化机理  PDF

  • 张良帅 1,2,3
  • 王柔 4
  • 贾一鸣 3
  • 陈家昌 1,2
  • 崔新战 1,2
  • 叶琳 3
  • 刘远坚 3
  • 杨阳 5
  • 牛英彬 3
1. 河南省文物考古研究院,郑州 450000; 2. 城市考古与保护国家文物局重点科研基地,郑州450000; 3. 重庆市文物考古研究院,重庆 400013; 4. 天津国家海洋博物馆,天津 300467; 5. 重庆大学 土木工程学院,重庆 400044

中图分类号: TU503K857.3

最近更新:2024-11-13

DOI:10.11835/j.issn.1000.582X.2024.10.006

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

为研究可溶盐侵蚀导致的潮湿环境下露天石窟寺的劣化机理。以重庆石佛寺遗址摩崖造像为研究对象,采用扫描电子显微镜及能谱仪、X射线衍射分析仪、X射线荧光分析仪、离子色谱分析仪、红外热成像仪等多重分析手段对石佛寺遗址摩崖造像表面病害及劣化产物进行科学分析与表征,厘清了可溶盐主要的种类与来源。在分析数据的基础上,结合石质文物本体构成与环境变化综合分析,探讨了潮湿环境下石质文物中可溶盐的作用模式,为石质文物保护提供了科学依据。

摩崖造像一般指在崖壁雕凿浅龛造像(或直接造像),一般进深较浅,没有明显的三壁之分,仅正面雕造一尊或一组造[

1]。石佛寺遗址位于重庆市江津区长江北岸的半山腰,是一座晚唐五代至明清时期的寺庙遗址,该遗址的摩崖造像至晚在北宋天禧年间开[2],是南方潮湿环境下露天石质文物的典型代表。干湿循[3]、冻融循[4]、人为污[5]、生[6]等都会对石质文物产生严重劣化作用。同时,可溶盐是导致石质文物劣化的主要原因之[7],大量现场和实验室检测数据已经能够证明这一事实。由于岩性和环境的差异,石质文物的劣化程度和机理也存在差[8]。其中,水在石质文物劣化过程中发挥着重要作用。因此,在潮湿环境下石质文物劣化机理保护研究中,研究不同盐分的来源和迁移,有助于保护文物,控制盐分导致的破[9⁃10]

1 摩崖造像表层劣化表现形式

石佛寺遗址摩崖造像千年来由于长期处于露天条件下,受环境中不利因素侵蚀,岩体普遍出现泛盐、粉化、剥落等表面劣化问题。内层岩石继续在环境中劣化,泛盐、粉化等病害进一步发展,在自身重力因素的影响下会逐层剥落(见图1~6)。

图 1  泛盐

Fig. 1  Salt efflorescence deterioration

图 2  泛盐

Fig. 2  Salt efflorescence deterioration

图 3  泛盐

Fig. 3  Salt efflorescence deterioration

图 4  粉化、剥落

Fig. 4  Chalking and crumbing deterioration

图 5  粉化、剥落

Fig. 5  Chalking and crumbling deterioration

图 6  片状剥落

Fig. 6  Scaling deterioration

2 可溶盐的种类分析

2.1 分析仪器与条件

扫描电子显微镜及能谱仪:美国FEI公司QUANTA-650型扫描电子显微镜(ESEM)及EDAX公司的APOLLO-X型能谱仪(EDS);实验条件:高真空模式,样品烘干粘在导电胶上;工作电压为15、25、30 kV;二次电子像及背散射像,能谱扫描时间30 s;能谱仪采用点扫与面扫工作模式。

X射线荧光光谱仪:德国BRUKER公司S2 RANGER光谱色散型X射线荧光光谱仪;实验条件:EQUA Oxides模式,样品烘干粉碎后,过100目筛,采用光谱纯硼酸压片。

离子色谱仪:德国Thermo Fisher公司DionexICS1100型离子色谱仪;砂岩与去离子水质量比为1∶100;首先称取经0.2 mm(80目)筛孔筛选的烘干待测砂岩样品0.500 g(精确到0.001 g),置于250 mL的烧杯中,加入50 mL的去离子水,超声提取15 min,每隔5 min震荡一次,保证固相分离完全;然后将溶液置于50 mL的离心管中,静置10 min,在离心管中以4 000 r/min转速离心10 min,离心后的溶液经0.45 μm微孔过滤膜过滤后,再用C18固相萃取小柱进行再次过滤,得到浸出液,最后进行离子色谱检测分析。

X射线衍射分析仪:德国布鲁克公司D8 ADVANCEX射线衍射分析仪对试样进行分析;实验条件:辐射源为Cu/Kα,波长为15.4 nm,管压40 kV,管流40 mA,扫描速度5 (°)/min,扫描范围10°~80°,样品烘干后过100目筛。

2.2 分析结果

2.2.1 扫描电子显微镜及能谱仪分析结果

从剥落劣化岩样的扫描电镜微观形貌图(见图7~9)可知,劣化后的砂岩样品中岩屑广泛分布于矿物颗粒之间,不同尺寸的孔隙结构明显,内部结构疏松,并且伴有由于胶结物流失造成的空洞和可溶盐结晶的存在,严重影响砂岩本体结构强度。为了进一步判断该样品中结晶盐的成分,使用能谱仪面扫描对该样品的主要元素成分进行表征,从面扫描结果可知(见图10),砂岩劣化产物主要含有C、O、Al、Si、S、K、Ca等元素,其中S、O、Ca元素分布规律相似,推断该劣化砂岩样品中可溶盐中应含有CaSO4或其水合物。

图7  劣化砂岩微观图片

Fig. 7  SEM morphology of deterioration sandstone

图8  劣化砂岩微观图片

Fig. 8  SEM morphology of deterioration sandstone

图9  可溶盐结晶破坏图片

Fig. 9  SEM morphology of soluble salts erosion

图10  劣化产物(42-1号样品)元素分布

Fig. 10  Elements distributions of deterioration components

2.2.2 X射线荧光光谱仪分析结果

使用XRF对多处劣化样品表面进行原位无损分析以得到其元素组分,分析样品及结果如表1所示。造像风化区域主要含有Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、Mn、Fe等元素,其中,样品44-1、45-1、45-4、47-1硫元素远超砂岩正常水平,且钙元素含量与硫元素含量呈正相关关系。可知,该样品应该含有相当量的可溶盐硫酸钙或其水合物。此外,其余样品均含有不同程度的O、S、Ca元素,表明硫酸钙在造像劣化区域广泛分布,应为劣化发育的主要因素之一。

表1  劣化产物X射线荧光分析数据
Table 1  XRF data of deterioration components ( % )
编号成分含量
w(Na2O)w(MgO)w(Al2O3)w(SiO2)w(P2O5)w(SO3)w(Cl)
41-1 1.38 3.120 15.500 72.100 0.349 0.580 0.127
42-1 2.400 15.600 73.900 0.366 0.836
44-1 4.350 16.500 0.206 51.300
45-1 2.460 10.800 53.100 17.000
45-3 1.950 12.200 67.400 7.520 0.142
45-4 5.510 32.900 41.000
46-1 4.050 15.300 71.500 0.770 0.197
47-1 1.830 9.710 47.100 21.500
48-1 3.320 12.500 65.500 8.510
49-1 3.180 10.200 66.900 9.440 0.140
50-1 1.340 3.410 12.000 74.900 0.639 0.158
编号 成分含量
w(K2O) w(CaO) w(TiO2) w(MnO) w(Fe2O3) 备注
41-1 1.970 0.625 0.349 0.359 2.850 轻度劣化
42-1 1.530 0.709 0.495 0.593 3.180 轻度劣化
44-1 0.396 26.000 0.143 0.949 重度劣化
45-1 0.940 13.300 0.402 1.460 中度劣化
45-3 1.160 7.690 0.363 1.370 中度劣化
45-4 0.474 18.600 0.187 0.139 0.955 重度劣化
46-1 1.420 4.240 0.446 0.121 1.680 轻度劣化
47-1 0.886 16.700 0.337 0.133 1.610 中度劣化
48-1 1.400 6.200 0.454 0.118 1.700 中度劣化
49-1 1.090 6.830 0.372 1.500 中度劣化
50-1 1.170 4.210 0.333 1.380 轻度劣化

2.2.3 离子色谱仪分析结果

通过离子色谱进一步对造像劣化区域的可溶盐阴离子进行定量分析,结果如表2图11所示。离子色谱数据显示,除样品41-1、42-1外,样品中普遍含有大量硫酸根离子,样品44-1、45-4中硫酸根离子最高,分别达到76.25 mg/g和83.04 mg/g。可知,劣化产物中可溶盐种类主要为硫酸盐,与能谱和X射线荧光结果一致,此外,可溶盐还有少量的氯盐与硝酸盐。

表2  劣化产物离子色谱分析数据
Table 2  Ion chromatography data of deterioration components
样品编号样品重量/g阴离子种类样品浸出液中阴离子的含量/(mg·L-1)样品中阴离子的含量/(mg·g-1)备注
41-1 0.501 0 Cl- 49.656 4 4.965 64 中度劣化
SO42-
NO3- 4.436 1 0.443 61
42-1 0.502 3 Cl- 18.961 8 1.896 18 轻度劣化
SO42-
NO3- 0.036 7 0.003 67
44-1 0.501 9 Cl- 4.235 5 0.423 55 重度劣化
SO42- 762.535 7 76.253 57
NO3- 60.014 8 6.001 48
45-1 0.501 2 Cl- 1.478 2 0.147 82 中度劣化
SO42- 264.548 5 26.454 85
NO3- 16.225 0 1.622 50
45-4 0.501 2 Cl- 1.085 0 0.108 50 重度劣化
SO42- 830.438 1 83.043 81
NO3- 22.744 2 2.274 42
52-1 0.5007 Cl- 0.897 3 0.089 73 中度劣化
SO42- 160.371 6 16.037 16
NO3- 13.254 8 1.325 48

  

  

  

图11  劣化产物离子色谱图

Fig. 11  Ion chromatogram of deterioration components

2.2.4 X射线衍射分析仪分析结果

XRD对劣化区域样品的结晶物质进行表征(见图12~17),结果显示,石佛寺遗址摩崖造像砂岩为长石石英砂岩,其表面劣化砂岩主要由石英、方解石、钠长石、钙长石组成,可溶盐主要为CaSO4∙2H2O。部分劣化砂岩矿物组成仅有石英、钠长石、钙长石,是由于方解石已完全反应,反应产物CaSO4∙2H2O随雨水冲刷而溶解流失(41-1、42-1)。

图12  41-1X射线衍射谱图

Fig. 12  XRD spectrum of 41-1

图13  42-1X射线衍射谱图

Fig. 13  XRD spectrum of 42-1

图14  44-1X射线衍射谱图

Fig. 14  XRD spectrum of 44-1

图15  45-1X射线衍射谱图

Fig. 15  XRD spectrum of 45-1

图16  45-3X射线衍射谱图

Fig. 16  XRD spectrum of 45-3

图17  45-4X射线衍射谱图

Fig. 17  XRD spectrum of 45-4

3 可溶盐来源

石佛寺遗址摩崖造像可溶盐主要为二水硫酸钙以及很少量的氯盐与硝酸盐,因此,二水硫酸钙是其中最具破坏作用的可溶盐。目前的研究认为,硫酸钙的来源主要有地下水中盐迁移、环境污染物沉降、硫氧化性细菌作用等几种途[

11⁃13]。通过对可溶盐析出位置的对比,可以排除毛细作用引起的地下水中的盐迁移的可能性。通过对摩崖造像表面细菌高通量测序(见图18),可排除硫氧化性细菌作用成盐因素。因此,石佛寺遗址摩崖造像长期处于露天环境中,其表面的硫酸钙主要由环境污染物沉降导致(见图19),主要通过酸雨与砂岩本身发生化学反应生[14]

图18  细菌在门水平的丰度分布图

Fig. 18  Relative abundance of bacteriophyta

图19  可溶盐来源示意图

Fig. 19  Schematic of sources of soluble salts

酸性物质对于砂岩的作用是不可逆的,长期处在酸性环境中,砂岩的钙质胶结物会流失,内部结构被破坏,岩体表面变得酥松,强度降低,最终剥离石窟本[

15]。影响石质文物安全的酸性物质一般有酸雨和酸性气体2种。酸雨是指pH<5.60的大气降水,又分为弱酸性降水(4.50≤pH<5.60)与强酸性降水(pH≤4.50[16]。重庆酸雨区位于中国第二大酸雨区中心,该酸雨区每年发生时间最早,污染严[17]。近年来,由于工业的发展和机动车数量的增加,重庆市酸雨由硫酸型转变为硫酸-硝酸混合[18]

摩崖造像本体在酸雨作用下可能存在以下2种反应方式:

1)直接反应生成CaSO4。在酸性环境中,砂岩中的化学反应会持续发生,直到反应物质消耗完为止。首先,是碳酸钙反应,当碳酸钙被酸性物质耗尽,砂岩中钙长石继续溶[

19]。如样品41-1、42-1、44-1、45-1中的碳酸钙就已耗尽,生成产物为CaSO4,然后,在适宜的温湿度条件下通过水合作用,生成CaSO4∙1/2H2O或CaSO4∙2H2O。

CaCO3+2H++SO42-               CaSO4+H2O+CO2
CaSO4+1/2H2O               CaSO4·1/2H2O
CaSO4+2H2O               CaSO4·2H2O

2)直接反应生成CaSO4∙2H2O。环境中渗入的SO2在水的参与下会与CaCO3反应生成CaSO3∙1/2H2O,之后CaSO3∙1/2H2O在氧气与水的缓慢作用下最终形成CaSO4∙2H2O,或当反应条件适宜时,CaSO3在初始反应后很快达到平衡,然后,随着反应的进行石膏的量继续增加,反应可能一步发[

20]

CaCO3+SO2+1/2H2O              CaSO3·1/2H2O+CO2
CaSO3·1/2H2O+1/2O2+3/2H2O              CaSO4·2H2O
CaCO3+SO2+1/2O2+2H2O               CaSO4·2H2O+CO2

或是在大气环境中,SO2首先完成氧化过程,在H2O的作用下生成H2SO4,CaCO3与H2SO4直接反应生成CaSO4∙2H2O[

21]

SO2+1/2O2              SO3
SO3+H2O              H2SO4
CaCO3+H2SO4+H2O              CaSO4·2H2O+CO2

4 可溶盐作用机理

通过对石佛寺劣化砂岩样品的微观分析,发现劣化的砂岩整体结构疏松、胶结物流失、孔隙度较大、颗粒与胶结物质结合变松散以及部分颗粒破碎。这些劣化现象是由水、热、酸、盐等多方面因素协同作用导致的,其中,可溶盐是主要的影响因素。学术界普遍认为,砂岩内部盐的作用会导致岩石颗粒间胶结作用破坏,增大岩石孔隙率,岩石内部结构劣化严重影响岩石的刚度与强度等力学参[

22]

4.1 可溶盐状态变化影响因素

潮湿露天环境下(见图20),石质文物会经受多种不利影响,其中温湿度是影响可溶盐状态变化的关键性因素。采用德国德图公司testo 175 H1型温湿度记录仪安放在龛内进行温湿度监测记录,采用德国德图公司testo 883型红外热像仪进行温度表征。

图20  摩崖造像赋存环境变化

Fig.20  Impact of environmental changes on the cliff caves

盐在岩石的劣化过程中,通过增加其热膨胀系数,从而增强与温度波动有关的劣化机[

23]。同时,二水硫酸钙的结晶机制属于黏着型生长机制,结晶过程中温度是关键的影响因[24]。由红外热成像结果可知(见图21),摩崖造像劣化区域温度波动更大,而相同位置可溶盐的变化也更加剧烈,导致劣化趋势更加明显,最终从本体上剥落。

图21  摩崖造像本体热量分布

Fig. 21  Heat distribution of the cliff caves

湿度变化是导致可溶盐状态变化另一重要影响因素,湿度与温度共同影响了水蒸气压力(见表3)。半水合硫酸钙转化为二水合硫酸钙的速率和程度取决于水蒸气压力,在25.6 ℃时的表观临界压力为2.3 kPa,即在25.6 ℃时,大于2.3 kPa左右的水蒸气压力会快速引起其水合反[

25]。通过分析温湿度监测数据(见图22),石佛寺遗址摩崖造像赋存环境已达到无水硫酸钙发生水合反应的条件。

表3  石膏相对湿度对应的水蒸气压力(kPa)[25]
Table 3  Water vapor pressure(kPa) corresponding to relative humidity of gypsum
相对湿度/%温度/℃
21.12325.62737
100 (2.50) 2.81 (3.28) 3.56 6.28
95 5.97
93 2.61
91 5.71
87 2.44
84 2.36 5.24
81 2.28
79 2.22
75 2.67
73 4.58
72 2.02
70 1.75 [2.30] 3.45
55
50 1.41 1.64
42 2.64
25 1.57
5 0.31

图22  温湿度变化监测数据

Fig. 22  Temperature and humidity change monitoring data

4.2 可溶盐侵蚀作用模式

从矿物组成来看,石佛寺遗址摩崖造像由石英、方解石、钠长石、钙长石、可溶盐组成。可溶盐的侵蚀作用方式主要有结晶压、水合压、热膨胀[

26]。砂岩内部盐的作用会导致岩石颗粒间胶结作用破坏,增大岩石孔隙率,岩石内部结构劣化严重影响岩石的刚度与强度等力学参[22]

温湿度变化会导致可溶盐发生物理及化学变化,物理变化包括溶解-结晶-再结晶过程和热膨胀过程,化学变化包括水合过程,常温下CaSO4向CaSO4∙1/2H2O或CaSO4∙2H2O转化较为容易。且由于潮湿环境下湿度波动较大,溶解-结晶-再结晶过程是循环多次发生的。虽然CaSO4∙2H2O的溶解度不高,但其结晶压和水合压较[

27⁃28]。结晶压和水合压是通过结晶-再结晶或水合过程导致的体积膨胀产生的压力实现的。在常温下,硬石膏水合成石膏时,体积增大31%,产生0.15 MPa的水合压力,极易把酥松岩石胀裂,形成片状剥落或粉末状脱[29]

砂岩表面温度与环境温度呈正相关,砂岩表面以内0~5 cm范围内的温度梯度最大,是热膨胀应力最集中的区[

30]。岩性对岩石热膨胀力有显著影响,在相同温度水平砂岩热膨胀力大于石灰[31]。在盐劣化过程中,表层盐层的热膨胀很难导致岩石破[32],热膨胀会导致粉化、解聚或其他类型的由内部内聚力损失构成的衰退,一般不会直接导致含盐层剥[33]

温湿度变化时,蒸发速率越大,盐分越容易被携带到表面,发生表面盐害现象;相反,盐分越容易滞留在砂岩内部,发生内部盐害现[

34]。表面盐害一般表现为泛盐、粉化等,内部盐害一般会形成石窟表面空鼓。此外,有研究表明石膏与生物之间也存在相互作用,通常表现为黑色结[35]

5 结 论

潮湿露天环境下,不可移动石质文物通常会受到多种影响因素的协同作用,可溶盐对于石质文物的侵蚀是导致其材料表面劣化的重要原因。而由于盐类的本身特性和文物保护的相关要求制约,又无法彻底将岩石中的盐分彻底脱出,这也就造成了文物表层材料劣化难以阻止。在长期的盐劣化循环之后会使砂岩孔隙度增大、内部结构变疏松,更加容易为可溶盐的渗透与迁移创造条件。以石佛寺遗址摩崖造像为代表的潮湿露天环境下石质文物中,CaSO4∙2H2O是造成表面劣化的主要可溶盐种类。因此,抑制石质文物表面可溶盐导致的劣化,首先应在遵循文物保护原则的基础上采用修建窟檐、保护设施等方式避免酸雨的直接侵蚀;此外,除采用脱盐方法外,还应针对影响不同种类可溶盐结晶、水合、热膨胀的外部赋存环境,尽量削弱其不利影响。

参考文献

1

杨晓芳, 韩炳华, 王炜. 山西平定红林湾石窟考古调查简报[J]. 文物季刊, 2022(2): 3-10. [百度学术] 

Yang X F, Han B H, Wang W. Archaeological investigation on Honglinwan Grotto in Pingding County, Shanxi Province[J]. World of Antiquity, 2022(2): 3-10. (in Chinese) [百度学术] 

2

邹后曦, 牛英彬, 许文英, . 重庆市江津区石佛寺遗址2016年度考古调查和试掘简报[J]. 南方民族考古, 2018(2): 54-97, 338-344. [百度学术] 

Zou H X, Niu Y B, Xu W Y, et al. Preliminary report on a survey and test excavations conducted at the Shifo Temple Site, Jiangjin District, Chongqing[J]. Southern Ethnology and Archaeology, 2018(2): 54-97, 338-344. (in Chinese) [百度学术] 

3

An W B, Wang L G, Chen H. Mechanical properties of weathered feldspar sandstone after experiencing dry-wet cycles[J]. Advances in Materials Science and Engineering, 2020, 2020(1): 1-15. [百度学术] 

4

Liu C C, Liu Y B, Ren W Z, et al. An adaptive prediction method for mechanical properties deterioration of sandstone under freeze-thaw cycles: a case study of Yungang Grottoes[J]. Heritage Science, 2021, 9(1): 154. [百度学术] 

5

Zhang H, Shi M F, Shen W, et al. Damage or protection? The role of smoked crust on sandstones from Yungang Grottoes[J]. Journal of Archaeological Science, 2013, 40(2): 935-942. [百度学术] 

6

Singh S, Dhyani S, Kokate P, et al. Deterioration of world heritage Cave Monument of Ajanta, India: insights to important biological agents and environment friendly solutions[J]. Heritage, 2019, 2(3): 2545-2554. [百度学术] 

7

Liu R Z, Zhang B J, Zhang H, et al. Deterioration of Yungang Grottoes: diagnosis and research[J]. Journal of Cultural Heritage, 2011, 12(4): 494-499. [百度学术] 

8

Kilian R, Borgatta L, Wendler E. Investigation of the deterioration mechanisms induced by moisture and soluble salts in the Necropolis of Porta Nocera, Pompeii (Italy)[J]. Heritage Science, 2023, 11(1): 72. [百度学术] 

9

Huang J Z, Zheng Y, Li H. Study of internal moisture condensation for the conservation of stone cultural heritage[J]. Journal of Cultural Heritage, 2022, 56: 1-9. [百度学术] 

10

Jiang G H, Guo F, Polk J S. Salt transport and weathering processes in a sandstone cultural relic, North China[J]. Carbonates and Evaporites, 2015, 30(1): 69-76. [百度学术] 

11

Klemm W, Siedel H. Evaluation of the origin of sulphate compounds in building stone by sulphur isotope ratio[J]. Geological Society London Special Publications, 2002, 205(1): 419-429. [百度学术] 

12

Hosono T, Uchida E, Suda C, et al. Salt weathering of sandstone at the Angkor Monuments, Cambodia: identification of the origins of salts using sulfur and strontium isotopes[J]. Journal of Archaeological Science, 2006, 33(11): 1541-1551. [百度学术] 

13

郭芳, 姜光辉. 大同云冈石窟可溶盐的分布及硫同位素特征[J]. 水文地质工程地质, 2013, 40(3): 126-130. [百度学术] 

Guo F, Jiang G H. Distribution of soluble salts and sulfur isotope in the Yungang Grottoes, Datong[J]. Hydrogeology & Engineering Geology, 2013, 40(3): 126-130. (in Chinese) [百度学术] 

14

段小平, 李斗果. “十三五” 期间重庆市降水污染状况浅析[J]. 低碳世界, 2021, 11(6): 22-23. [百度学术] 

Duan X P, Li D G. Analysis of precipitation pollution in Chongqing during the “Thirteenth Five-Year Plan” [J]. Low Carbon World, 2021, 11(6): 22-23. (in Chinese) [百度学术] 

15

严绍军, 谭松娥, 刘俊红, . 酸对云冈石窟砂岩的劣化作用试验研究[J]. 长江科学院院报, 2013, 30(9): 64-68. [百度学术] 

Yan S J, Tan S E, Liu J H, et al. Acid-induced degradation of sand rock in Yungang Grottoes[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(9): 64-68. (in Chinese) [百度学术] 

16

刘嘉麒. 降水背景值与酸雨定义研究[J]. 中国环境监测, 1996, 12(5): 5-9. [百度学术] 

Liu J Q. Research on precipitation background value and definition of acid rain[J]. Environmental Monitoring in China,1996, 12(5): 5-9. (in Chinese) [百度学术] 

17

Li Y F, Wang Y Q, Wang Y J, et al. Effects of simulated acid rain on soil respiration and its component in a mixed coniferous-broadleaved forest of the Three Gorges Reservoir Area in Southwest China[J]. Forest Ecosystems, 2019, 6(1): 32. [百度学术] 

18

Guo P, Wang Y. The impact of acid deposition on China’s Three Gorges Reservoir[J]. Polish Journal of Environmental Studies, 2015, 24(6): 2411-2419. [百度学术] 

19

Geng H, Zhang S J, Zhi J H, et al. Acid solution decreases the compressional wave velocity of sandstone from the Yungang Grottoes, Datong, China[J]. Heritage Science, 2019, 7(1): 4. [百度学术] 

20

Aregba-Driollet D, Diele F, Natalini R. A mathematical model for the sulphur dioxide aggression to calcium carbonate stones: numerical approximation and asymptotic analysis[J]. SIAM Journal on Applied Mathematics, 2004, 64(5): 1636-1667. [百度学术] 

21

Giavarini C, Santarelli M L, Natalini R, et al. A non-linear model of sulphation of porous stones: numerical simulations and preliminary laboratory assessments[J]. Journal of Cultural Heritage, 2008, 9(1): 14-22. [百度学术] 

22

严绍军, 方云, 刘俊红, . 可溶盐对云冈石窟砂岩劣化试验及模型建立[J]. 岩土力学, 2013, 34(12): 3410-3416. [百度学术] 

Yan S J, Fang Y, Liu J H, et al. Deterioration experiment with soluble salt on sandstone of Yungang Grottoes and its model creation[J]. Rock and Soil Mechanics, 2013, 34(12): 3410-3416. (in Chinese) [百度学术] 

23

Al-Naddaf M. The effect of salts on thermal and hydric dilatation of porous building stone[J]. Archaeometry, 2009, 51(3): 495-505. [百度学术] 

24

Tang S, Ji Y H, Ge K. Crystallization kinetics and mechanisms of calcium sulfate dihydrate: experimental investigation and theoretical analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21676-21684. [百度学术] 

25

Torrance A, Darvell B W. Effect of humidity on calcium sulphate hemihydrate[J]. Australian Dental Journal, 1990, 35(3): 230-235. [百度学术] 

26

张良帅, 陈家昌, 贺思予. 土遗址盐害机理与抑制研究综述[J]. 敦煌研究, 2020(3): 129-136. [百度学术] 

Zhang L S, Chen J C, He S Y. A summary of the research on the cause and control of salt damage at earthen sites[J]. Dunhuang Research, 2020(3): 129-136. (in Chinese) [百度学术] 

27

Winkler E M, Singer P C. Crystallization pressure of salts in stone and concrete[J]. Geological Society of America Bulletin, 1972, 83(11): 3509. [百度学术] 

28

Winkler E M, Wilhelm E J. Salt burst by hydration pressures in architectural stone in urban atmosphere[J]. Geological Society of America Bulletin, 1970, 81(2): 567. [百度学术] 

29

李海, 石云龙, 黄继忠. 大气污染对云冈石窟的风化侵蚀及防护对策[J]. 环境保护, 2003, 31(10): 44-47. [百度学术] 

Li H, Shi Y L, Huang J Z. Erosion of Yungang Grottoes by air pollution and its protection countermeasures[J]. Environmental Protection, 2003, 31(10): 44-47. (in Chinese) [百度学术] 

30

陈星. 云冈石窟砂岩表层温度效应及劣化机理研究[D]. 武汉: 中国地质大学, 2012. [百度学术] 

Chen X. Study on temperature effect and deterioration mechanism of sandstone surface in the Yungang Grottoes[D].Wuhan: China University of Geosciences, 2012. (in Chinese) [百度学术] 

31

谌伦建, 赵洪宝, 刘希亮, . 砂岩与石灰岩热膨胀力试验研究[J]. 中国矿业大学学报, 2008, 37(5): 670-674. [百度学术] 

Chen L J, Zhao H B, Liu X L, et al. Experimental research on heat swelling power of sandstone and limestone[J]. Journal of China University of Mining & Technology, 2008, 37(5): 670-674. (in Chinese) [百度学术] 

32

Wang Z T, An Z S. A simple theoretical approach to the thermal expansion mechanism of salt weathering[J]. CATENA, 2016, 147: 695-698. [百度学术] 

33

Diaz Gonçalves T, Brito V. Differential thermal expansion as a cause of salt decay: literature review, experiments, and modelling of micro and macro effects on Ançã limestone[J]. Studies in Conservation, 2017, 62(6): 310-328. [百度学术] 

34

张虎元, 杨盛清, 孙博, . 石质文物盐害类型与蒸发速率的关系研究[J]. 岩石力学与工程学报, 2021, 40(S2): 3284-3294. [百度学术] 

Zhang H Y, Yang S Q, Sun B, et al. Research on the relationship between salt damage types and evaporation rate of stone relics[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3284-3294. (in Chinese) [百度学术] 

35

Alves C. Scanning electron microscopy studies of neoformations on stony materials of modern building works[J]. Microscopy and Microanalysis, 2013, 19(5): 1241-1247. [百度学术]