摘要
盐水含水层CO2埋存能力是关乎中国实现碳中和目标的基础问题。四川盆地作为中国西南地区重要的油气产地,其深部盐水含水层的CO2埋存前景尚缺乏比较深入的定量研究。三叠系雷口坡组(T2l)是四川盆地的优质卤储层,其四段(T2
CO2地质埋存(geological CO2 storage,GCS)是缓解温室气体效应的重要手
除了上文提及的体积法,CO2埋存能力的估算还可采用圈闭法(CSLF法
De Simone
在本研究中,采用De Simone
基于解析法对四川盆地雷口坡组盐水含水层进行埋存能力评估。CO2BLOCK是De Simone

图1 CO2BLOCK程序模块及计算流程
Fig. 1 CO2BLOCK program modules and calculation process
孔隙超压的计算会根据岩石破坏机理的不同而采用不同的计算公式。当岩石发生拉张破坏时,超压的安全上限等于最小主应力减去初始孔隙压力再加上岩石抗拉强度(见
(1) |
当岩石发生剪切破坏时,此时的最大安全超压等于减去1个与最大主应力、初始孔隙压力、岩石黏聚力和内摩擦角有关的函数(见
(2) |
CO2BLOCK取上述2种最大安全超压的低值作为最大可持续超压。
可以任意设定一个总参考注入速率,根据De Simone
(3) |
式中:; ;k为绝对渗透率;为储层厚度;为CO2密度;和为盐水和CO2动力黏度;表示<0的Lambert函数。
四川盆地中三叠纪雷口坡组主要为局限或蒸发台地沉积,自下而上划分为雷一段、雷二段、雷三段和雷四段。埋深从2 000~6 000 m不等,平均厚度160
研究表明,四川盆地卤水层分布广泛,如

图2 四川盆地卤水层CO2地质封存远景区及目标储层岩性柱状图
Fig. 2 Potential area and target reservoir lithology for geological CO2 storage in saline aquifers in the Sichuan Basin
综合研究区内丰卤1井、油1井、平落4井等钻孔信
目标储层 | 储层与岩石 | |||||
---|---|---|---|---|---|---|
面积A/k | 平均埋深D/m | 厚度H/m | 孔隙度ϕ/% | 渗透率k/mD | ||
T2 | 4 837(3 578, 5 873) | 3 260 | 21(11, 40) | 5.5(3.7, 7.3) | 2.3(0.9, 9.8) | |
T2 | 4 764(4 012, 6 230) | 3 600 | 30(15, 47) | 3.7(2.5, 4.6) | 3.9(1.1, 16) | |
T2 | 4 538(3 214, 6 512) | 4 600 | 112(67, 170) | 6.49(5.4, 7.8) | 4.83(2.2, 14.5) | |
取值依据 |
文献[ |
文献[ |
文献[ |
文献[ | 文献[23⁃25,2 8] | |
目标储层 | 流体性质 | |||||
初始压力P0/MPa | 温度T/°C |
CO2密度ρc/(kg· |
CO2黏滞性μc/ (1 |
盐水黏滞性μw/ (1 | 盐度Ss | |
T2 | 32.6 | 89.4 | 725.43 | 6.16 | 5.97 | 0.353 |
T2 | 36.0 | 97.8 | 727.96 | 6.23 | 5.23 | 0.228 |
T2 | 46.0 | 120.8 | 739.69 | 6.47 | 3.88 | 0.377 |
取值依据 |
文献[ |
文献[ |
文献[ |
文献[ |
文献[ |
文献[ |
目标储层 | 最大主应力/MPa | 最小主应力/MPa | 有效应力比k0 | 抗拉强度S0/MPa | 黏聚力C/MPa | 内摩擦角φ/(°) | 岩石孔隙压缩性Cr/(1 |
---|---|---|---|---|---|---|---|
T2 | 42.3 | 29.6(29.6, 33.8) | 0.7(0.7~0.8) | 15(15~20) | 10(10~20) | 35(25, 35) | 2.10 |
T2 | 46.5 | 32.6(32.6, 37.2) | 0.7(0.7~0.8) | 15(15~20) | 10(10~20) | 35(25, 35) | 3.62 |
T2 | 59.2 | 41.4(41.4, 47.3) | 0.7(0.7~0.8) | 15(15~20) | 10(10~20) | 35(25, 35) | 4.52 |
取值依据 |
根据埋深,按静岩压力梯度 23 MPa/km计算 | 经验假设 | 岩性 | 岩性 |
文献[ |
文献[ |
根据1.1节所列公式和
参数/MPa | 储层 | 抗拉强度S0/MPa | 有效应力比k0 | 黏聚力C/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 0.7 | 0.75 | 0.8 | 7 | 15 | 20 | ||
T2 | 2.0 | 6.5 | 6.5 | 6.5 | 9.4 | 12.3 | 2.3 | 12.0 | 12.0 | |
T2 | 1.6 | 5.7 | 5.7 | 5.7 | 8.9 | 12.1 | 1.4 | 11.6 | 11.6 | |
T2 | 0.4 | 3.1 | 3.1 | 3.1 | 7.1 | 11.2 | 0.2 | 10.2 | 10.4 |
分析
设定总参考注入速率为任意值,在不同井距、井数的工况下对3个储层连续注入CO2 30 a,由此产生的超压变化(离井群中心最近的注入井处的压力抬升)如

图3 注入30 a雷四段、雷三段和雷一段储层超压(MPa)随井距和井数的分布
Fig. 3 Distribution of the reservoir maximum overpressure (MPa) respect to the well spacing and well number, after 30 years of consecutive CO2 injection in the fourth, third and first members of the Leikoupo Formation
对比
最大可持续超压决定了GCS项目的注入操作必须满足单井CO2可持续注入速率小于最大可持续注入速率(见

图4 雷四段、雷三段和雷一段单井可持续注入速率(Mt/a)随井距和井数的分布
Fig. 4 The distribution of the maximum sustainable injection rate(Mt/a) of the fourth, third and first members of Leikoupo Formation with well spacing and well number
在上述计算的基础上,将3个储层的最大可持续注入速率乘以相应的注入时长,可计算出研究区3个储层的CO2埋存能力(即最大埋存容量)。

图5 雷四段、雷三段和雷一段CO2埋存容量(Gt)随井距和井数的分布
Fig. 5 Distribution of CO2 storage capacity (Gt) with well spacing and number of wells in the fourth, third and first members of Leikoupo Formation

图6 井距d=2 km雷口坡组CO2埋存能力和注入能力与超压的关系
Fig. 6 CO2 storage capacity and injection capacity of the Leikoupo Formation varying with overpressure when the well spacing d=2 km
观察图

图7 雷四段、雷三段和雷一段CO2埋存容量随井距和井数的分布
Fig. 7 Distribution of CO2 storage capacity of the fourth and first members of Leikoupo Formation with well spacing and number of wells
限于资料和储层岩石参数本身非均质性导致的参数取值不确定性,采用储层参数的区域平均值计算储层CO2埋存能力存在相应的不确定性。为此有必要分析不同地应力和储层物性参数对埋存能力计算结果的可能影响,进而识别敏感性最大的参数。

图8 储层参数敏感性讨论
Fig. 8 Sensitivity discussion of reservoir parameters
黏聚力C取值范围为0~10 MPa。低值表示发育先存断层或裂缝等薄弱面,而高值表示岩石相对完整致密。=/,即平均水平应力与垂直应力的比值,在0.5~2之间变
总埋存容量随各参数值的变化情况如
为评估本研究计算结果和CO2BLOCK方法特点,有必要与传统数值计算进行对比分析。限于手头资料,
U.S.DOE法所需参数及取值 | |||||||
---|---|---|---|---|---|---|---|
盐水含水层有效分布面积A/k | 有效孔隙度 | 储层厚度h/m |
储层CO2密度/(kg· | 埋存效率/% | |||
4 500~5 000 | 0.037~0.065 | 21~112 | 720~750 | 2.7 | |||
公式:0.93 Gt | |||||||
溶解度法所需参数及取值 | |||||||
CO2埋存面积占总盆地的比例a |
分区面积A/k | 储层厚度h/m | 含水层厚度占总沉积层的比例 | 有效孔隙度 |
CO2总溶解度/(mol·k |
饱和CO2的盐水密度/(kg· |
CO2摩尔质量/(g·mo |
0.01 | 40 000~50 000 | 21~112 | 0.1 | 0.037~0.065 | 地温、压力等参数的函数 |
含盐量的函 | 44 |
公式:=1.19 Gt |

图9 不同方法计算雷口坡组储层的埋存容量
Fig. 9 Energy storage capacity of Leikoupo Formation by different calculation methods
CO2BLOCK计算结果低于上述2种传统方法的计算值,该结论也与Qin
基于多井并注工况下的储层超压叠加原理,利用De Simone
1)四川盆地雷口坡组储层的CO2埋存能力为0.83 Gt,其中,雷四段的埋存容量最大,而雷一段的埋存容量最小。计算结果与U.S.DOE法和溶解度法具有可比性,后二者计算结果分别为0.93 Gt和1.19 Gt。
2)雷四段、雷三段和雷一段的最大可持续注入速率分别为0.550、0.051、054 Mt/a,对应的最大可持续超压分别为3.09、5.67、6.55 MPa。
3)由浅及深3个储层的经济最优方案(井数/口,井距/km)分别为(16,17)(20,17)(16,19),埋存容量为0.50、0.07、0.04 Gt,合计占雷口坡最大埋存容量的84%。
4)最大埋存容量对应力比、储层展布范围和孔隙度的变化十分敏感;黏聚力、内摩擦角、渗透率、储层厚度在不同程度上也影响最大可持续超压,进而影响最大埋存容量。
参考文献
Xie J, Zhang K N, Li C, et al. Preliminary study on the CO2 injectivity and storage capacity of low-permeability saline aquifers at Chenjiacun site in the Ordos Basin[J]. International Journal of Greenhouse Gas Control, 2016, 52: 215-230. [百度学术]
Xie J, Gou X F, Guo J. Assessing a potential site for offshore CO2 storage in the Weixinan Sag in the northwestern Beibu Gulf Basin, Northern South China Sea[J]. Greenhouse Gases: Science and Technology, 2023, 13(1): 99-119. [百度学术]
张炜, 李义连, 郑艳, 等. 二氧化碳地质封存中的储存容量评估: 问题和研究进展[J]. 地球科学进展, 2008, 23(10): 1061-1069. [百度学术]
Zhang W, Li Y L, Zheng Y, et al. CO2 storage capacity estimation in geological sequestration: Issus and research progress[J]. Advances in Earth Science, 2008, 23(10): 1061-1069. (in Chinese) [百度学术]
刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095. [百度学术]
Diao Y J, Zhu G W, Jin X L, et al. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095. (in Chinese) [百度学术]
范基姣, 贾小丰, 胡秋韵, 等. 四川盆地深部咸水含水层二氧化碳地质储存适宜性评价[J]. 地下水, 2014, 36(6): 59-64. [百度学术]
Fan J J, Jia X F, Hu Q Y, et al. Potential and suitable conditions evaluation of CO2 storage in the salt water aquifer in the depth of Sichuan Basin[J]. Ground Water, 2014, 36(6): 59-64. (in Chinese) [百度学术]
Wei N, Li X C, Wang Y, et al. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China[J]. International Journal of Greenhouse Gas Control, 2013, 12: 231-246. [百度学术]
Goodman A, Hakala A, Bromhal G, et al. US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965. [百度学术]
杨永智, 沈平平, 宋新民, 等. 盐水层温室气体地质埋存机理及潜力计算方法评价[J]. 吉林大学学报(地球科学版), 2009, 39(4): 744-748. [百度学术]
Yang Y Z, Shen P P, Song X M, et al. Greenhouse gas geo-sequestration mechanism and capacity evaluation in aquifer[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 744-748. (in Chinese) [百度学术]
李琦, 魏亚妮. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科技导报, 2013, 31(27): 65-70. [百度学术]
Li Q, Wei Y N. Progress in combination of CO2 geological storage and deep saline water recovery[J]. Science & Technology Review, 2013, 31(27): 65-70. (in Chinese) [百度学术]
Li X C, Ohsumi T, Koide H, et al. Near-future perspective of CO2 aquifer storage in Japan: site selection and capacity[J]. Energy, 2005, 30(11/12): 2360-2369. [百度学术]
李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968. [百度学术]
Li X C, Liu Y F, Bai B, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968. (in Chinese) [百度学术]
韩燚, 梁荣柱. 深部盐水层二氧化碳储量的计算新方法[J]. 西部探矿工程, 2011, 23(6): 112-115. [百度学术]
Han Y, Liang R Z. The new means of estimation of CO2 storage capacity in deep saline aquifer[J]. West-China Exploration Engineering, 2011, 23(6): 112-115. (in Chinese) [百度学术]
Qiao X J, Li G M, Li M, et al. CO2 storage capacity assessment of deep saline aquifers in the Subei Basin, East China[J]. International Journal of Greenhouse Gas Control, 2012, 11: 52-63. [百度学术]
Jafari M, Cao S C, Jung J. Geological CO2 sequestration in saline aquifers: implication on potential solutions of China’s power sector[J]. Resources, Conservation and Recycling, 2017, 121: 137-155. [百度学术]
Cumming L, Gupta N, Sminchak J, et al. International collaboration to investigate carbon dioxide storage opportunities for a coal-fired power plant in Sichuan Basin, China[J]. Energy Procedia, 2014, 63: 4918-4925. [百度学术]
De Simone S, Krevor S. A tool for first order estimates and optimisation of dynamic storage resource capacity in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103258. [百度学术]
Nordbotten J M, Celia M A, Bachu S. Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection[J]. Transport in Porous Media, 2005, 58(3): 339-360. [百度学术]
Qin J Z, Zhong Q H, Tang Y, et al. CO2 storage potential assessment of offshore saline aquifers in China[J]. Fuel, 2023, 341: 127681. [百度学术]
Ganjdanesh R, Hosseini S A. Geologic carbon storage capacity estimation using enhanced analytical simulation tool (EASiTool)[J]. Energy Procedia, 2017, 114: 4690-4696. [百度学术]
De Simone S, Jackson S J, Krevor S. The error in using superposition to estimate pressure during multisite subsurface CO2 storage[J]. Geophysical Research Letters, 2019, 46(12): 6525-6533. [百度学术]
林耀庭, 陈绍兰. 四川盆地地下卤水勘探开发前景展望[J]. 盐湖研究, 2008, 16(1): 1-7, 21. [百度学术]
Lin Y T, Chen S L. Exploration and development prospect of underground brine in Sichuan Basin[J]. Journal of Salt Lake Research, 2008, 16(1): 1-7, 21. (in Chinese) [百度学术]
Zhou X, Li C J. Hydrogeochemistry of deep formation brines in the central Sichuan Basin, China[J]. Journal of Hydrology, 1992, 138(1/2): 1-15. [百度学术]
林耀庭. 四川盆地三叠系地下卤水储层特征及其富集的控制作用[J]. 盐湖研究, 1999, 7(3): 1-7. [百度学术]
Lin Y T. Storage characteristics of the ground brine of trias is Sichuan Basin and the determination factors of its enrichment[J]. Journal of Salt Lake Research, 1999, 7(3): 1-7. (in Chinese) [百度学术]
林耀庭, 何金权, 王田丁, 等. 四川盆地中三叠统成都盐盆富钾卤水地球化学特征及其勘查开发前景研究[J]. 化工矿产地质, 2002, 24(2): 72-84. [百度学术]
Lin Y T, He J Q, Wang T D, et al. Geochemical characteristics of potassium-rich brine in Middle Triassic Chengdu Salt Basin of Sichuan basinand its prospects for brine tapping[J]. Geology of Chemical Minerals, 2002, 24(2): 72-84. (in Chinese) [百度学术]
林耀庭, 姚有成, 康正华, 等. 四川宣达盐盆富钾富矿卤水地球化学特征及资源意义研究[J]. 盐湖研究, 2004, 12(1): 8-18. [百度学术]
Lin Y T, Yao Y C, Kang Z H, et al. Study on the geochemical characteristics and resource significance of the highly mineralized potassium-rich brine in the Sichuan Xuanda Salt Basin[J]. Journal of Salt Lake Research, 2004, 12(1): 8-18.(in Chinese) [百度学术]
王美芳. 川西三叠系水文地质特征及富钾卤水资源量计算[D]. 成都: 成都理工大学, 2014. [百度学术]
Wang M F. Hydrogeological characteristics of Triassic in western Sichuan and calculation of potassium-rich brine resources[D].Chengdu: Chengdu University of Technology, 2014. (in Chinese) [百度学术]
Yang W, Liu M C, Wei G Q, et al. Lithofacies paleogeography and characteristics of large-scale reservoirs of the Middle Triassic Leikoupo Formation in Sichuan Basin, China[J]. Journal of Natural Gas Geoscience, 2021, 6(5): 255-268. [百度学术]
Tian H, Zhang J Y, Xin Y G, et al. Reservoir characteristics and forming conditions for the Middle Triassic Leikoupo Formation in the western Sichuan Basin, China[J]. Journal of Natural Gas Geoscience, 2019, 4(2): 101-110. [百度学术]
Redlich O, Kwong J N S. On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233-244. [百度学术]
Spycher N, Pruess K, Ennis-King J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar[J]. Geochimica et Cosmochimica Acta, 2003, 67(16): 3015-3031. [百度学术]
Altunin V V, Sakhabetdinov M A. Viscosity of liquid and gaseous carbon dioxide at temperatures of 220-1300 K and pressure up to 1200 bar[J]. Teploenergetika, 1972, 8(5): 85-89. [百度学术]
Batzle M, Wang Z J. Seismic properties of pore fluids[J]. Geophysics, 1992, 57(11): 1396-1408. [百度学术]
Jaeger J C, Cook N G W, Zimmerman R. Fundamentals of rock mechanics[M]. John Wiley & Sons, 2009. [百度学术]
李传亮. 岩石压缩系数与孔隙度的关系[J]. 中国海上油气 地质, 2003, 15(5): 355-358. [百度学术]
Li C L. The relationship between rock compressibility and porosity[J]. China Offshore Oil and Gas, 2003, 15(5): 355-358. (in Chinese) [百度学术]
Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211-215. [百度学术]
Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175. [百度学术]
Duan Z H, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271. [百度学术]