矩形光栅正弦象生成的研究

INVESTIGATION ON THE FORMATION OF SINE IMAGE OF RECLANGULAR GRATING

程堂郭 袁祥辉 黄波

Chen Fanceno Yuan Xianhui Huang Bo
(应用的职系) (光史精宏仪器系)

摘 要 不相干行射 行限成象系统的OTE、等效为强度精谱线性滤波**器,当系**统合有十分严重聚焦误差时,我们推测自公式 $\rho_0 = \frac{\lambda}{1.4\omega_1} \rho_0$, 计算结果与实验数据物合,从而给计组形型特正航象以正确的解释。

关键词 光学传递函数; 截止频率, 象差函数

ABSTRACT Off of a diffraction - limited incoherent imaging system is equivalent to a linear filter of the spectrum of the intensity when the system focusing error is very serious, we derive a formular $\rho_C = \frac{\lambda}{4.4\omega_1} \rho_0$, and these results of calculation agree with the experimental data, which is exact explanation to the sine image of rectangular grating.

KEY WORDS Optical transfer function, cutoff frequency, aberration function

一、前 吉

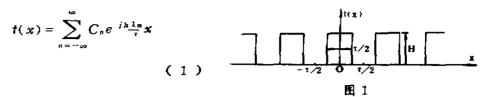
矩形大棚距光栅(简称粗光栅, 其棚置r, 0.5mm)光强信号,经简单的并含有十分严重的聚焦误差光学系统后,可获得正弦象,正弦象投影到光学扫描器(一种专用的 MOS 图象传感器)上,能构成一种动态电子扫描新型的光栅位移测量系统,它具有传感头与标尺光栅之间的间隙特别大(15mm 左右),耐现场污染、对安装和使用环境要求不高等优点,可广泛用于机械加工和机械运动的位移量精密检测。本文者重分析矩形光栅正弦象的成因,这对于光学传递函数(OTF)的进一步研究和用GS16)光学扫描器构成粗光栅系统的原理研究,都具有很大的意义。

本文于1!188年4月30日收到

The Committee of the Arthur Burger Conf. The Committee of the Committee of

二、矩形光栅强度空间频谱分析

如图 1 所示, 光栅的光强透过率表为:



显然

$$t(x) = \begin{cases} 0 & -\tau/2 \leqslant x \leqslant -\tau/4 \\ H & -\tau/4 \leqslant x \leqslant \tau/4 \\ 0 & \tau/4 < x \leqslant \tau/2 \end{cases}$$
 (2)

(1)式中 C_n 可表为 $\left(\gamma_0 = \frac{1}{\tau}\right)$:

$$C_{n} = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} f(x) e^{j2\pi n} e^{x} dx = \frac{H}{2} \sin c \left(\frac{\pi}{2}\right)$$
 (3)

考虑到sin c函数的性质:

 $\sin c(o) = 1$

 $\sin c(n) = 0$ 当n为非零值时。

故 $C_0 = H/2$, 于是(1)式化为:

$$t(x) = \frac{H}{2} + H\left(\left(\sin c \frac{1}{2}\right)\cos 2\pi \frac{x}{\tau} + \left(\sin c \frac{3}{2}\right)\cos 2\pi \frac{3x}{\tau}\right) + \left(\sin c \frac{5}{2}\right)\cos 2\pi \frac{5x}{\tau} + \cdots\right)$$

$$t(x) = \frac{H}{2} + H\left(\left(\sin c \frac{1}{2}\right)\cos 2\pi \gamma_0 x + \left(\sin c \frac{3}{2}\right)\cos 2\pi (3\gamma_0) x\right) + \left(\sin c \frac{5}{2}\right)\cos 2\pi (5\gamma_0) x + \cdots$$
(5)

由(5)式可知,矩形光栅透过的为空间频率γο, 3γο, 5γο, …等诸正弦强度谱分量。

三、衍射受限系统光学传递函数(OTF)简述

对于相干光照明的衍射受限系统 [1] (称相干系统),象的复振幅频谱 $G_*(f_*,f_*)$ 中每一分量只决定于物复振幅频谱 $G_*(f_*,f_*)$ 中相应的分量,其比值为:

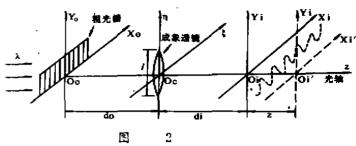
$$\mathbf{H}(f_x, f_y) = \mathbf{G}_{i}(f_x, f_y) / \mathbf{G}_{i}(f_x, f_y)$$
 (6)

式中 f_* , f_* 为二维物函数的空间频率变量, $H(f_*, f_*)$ 称为相干传递函数, 粗体字表示复值函数。由(6)可知,相干系统物象、复振幅频谱变换是线性的,故 $H(f_*, f_*)$ 等效为复振幅频谱线性滤波器,如频域取反射坐标,则 $H(f_*, f_*)$ 表示为 $^{[2]}$ 。

$$H(f_x, f_y) = p(\lambda d_i f_x, \lambda d_i f_y) \tag{7}$$

这里,只讨论衔射受限系统,认为透镜为无象差的,故光瞳函数取实函数 $p(\lambda d_i f_x, \lambda d_i f_y)$,其中 d_i 为理想高斯象距, λ 为相干照明光 波 的波长,如图 2 所示。

对于不相干系统,物、象光强度 归一化频谱亦有与(6)式类似的关系:



$$K(f_x, f_y) = F_1(f_x, f_y) / F_y(f_y, f_y)$$
 (8)

 $K(f_xf_y)$ 称为光学传递函数(OTF),可知,物、象光强度频谱变换也是线性的,故 $K(f_xf_y)$ 亦等效为强度谱的线性滤波器,而 $K(f_xf_y)$ 表为[2];

$$\mathbf{K}(f_x f_y) = \int_{-\infty}^{\infty} p\left(\xi - \frac{\lambda d_x f_x}{2}, \eta - \frac{\lambda d_x f_y}{2}\right)$$

$$\cdot p\left(\xi + \frac{\lambda d_x f_x}{2}, \eta + \frac{\lambda d_x f_y}{2} / \int_{-\infty}^{\infty} p(\xi, \eta) d\xi d\eta \qquad (9)$$

(9)式中λ应理解为不相干照明光波的中心波长。

四、衍射受限系统含聚焦误差时的OTF

若高斯成象面 $x_i o_i y_i$ 沿光轴方向移动一个很小位移量z,称z为偏离量, 如图 2 所示,这时有:

$$1/d_0 + 1/(d_i + z) - 1/f = \varepsilon$$
(10)

或
$$|\varepsilon| = z/d_{z}^{z}$$
 (11)

(10)式中f为薄透镜的焦距,(10)式称系统聚焦不足(defect of focus),它等效在无象差透镜的光瞳上引入一个象差函数 $W(\xi,\eta)^{[3]}$.

$$W(\xi, \eta) = \frac{1}{2} \frac{(l/2)^2}{d^2} r^2 z \tag{12}$$

(12)式中 $r^2 \le (\xi^2 + \eta^2) / \left(\frac{1}{2}\right)^2$,并且 $W(\xi, \eta)$ 亦可表为[4]:

$$W(\xi, \eta) = \frac{1}{2} \varepsilon(\xi^2 + \eta^2) \tag{13}$$

当r=1, $W(\xi, \eta)$ 取最大值 ω_i , 即

$$\omega_1 = W(\xi, \eta) |_{Max} = \frac{1}{8} \left(\frac{l}{d_1}\right)^2 z = \frac{1}{8} e l^2$$
 (14)

 ω_1 表征聚焦误差严重程度的量度,其量纲 $[\omega_1]=[长度]$,在引人象差函数 $W(\xi,\eta)$ 之后,选

镜之光瞳函数应为:

$$\mathbf{P}(\hat{\xi}, \eta) = p(\xi, \eta)e^{ik^{u}(\xi^{\dagger})^{\alpha}} \tag{15}$$

如果光瞳内光强度均匀,则(15)式化为:

$$P(\xi, \eta) = e^{(\xi - 1)^{\eta}}$$
 (16)

(15) 式中k=2π/2, (16) 武指数函数前忽略了一个元美重要的常数、此时, 光学传递函数应表为 ^[5];

$$\mathbf{K}(f_{s}, f_{s}) = \iint_{z \in \mathbb{R}_{s} \times f_{s}^{-1}} \mathbf{P} \left(\hat{z} + \frac{\lambda d_{s} f_{s}}{2}, \eta - \frac{\lambda d_{s} f_{s}}{2} \right) \mathbf{P}^{*} \left(\hat{z} + \frac{\lambda d_{s} f_{s}}{2}, \eta + \frac{\lambda d_{s} f_{s}}{2} \right) d\hat{z} d\eta / \iint_{z \in \mathbb{R}_{s}} d\hat{z} d\eta$$

$$(17.)$$

(17)式中 $\sigma(f_0,f_0)$ 为P函数自相关积分限,亦两光流重叠的部分而积, $\sigma(0,0)$ 为两光瞳完全重合的面积,即 $\sigma(f_0)^2$,把(13),(16)代入(17)式得:

$$\mathbf{K}(f_{x}f_{z}) = \iint_{z(f_{x}, r_{x})} e^{jk\frac{\varepsilon}{2} \left(\left(\frac{\varepsilon}{\varepsilon} - \frac{id_{z}f_{x}}{2}\right)^{2} + \left(\eta - \frac{id_{z}f_{z}}{2}\right)^{2}\right)} d\xi d\eta + \left(\eta + \frac{id_{z}f_{y}}{2}\right)^{2} d\xi d\eta / (18)$$

对于园形光瞳 $|f_x| = |f_y| = \rho$,于是经过较繁的计算(见附录), (18)式化为:

$$\mathbf{K}(\rho) = \frac{4\sqrt{2}}{I^2 R} J_1(Z) \tag{19}$$

(19) 武中 $A = \sqrt{(l/2)^2 - (\lambda d_1 \rho / \sqrt{|2|})^2}$, $B = ke\lambda d_1 \rho$, $Z = \sqrt{|2|} AB$, J_1 为 1 阶 Bessd 函数。当 $\sqrt{|2|} AB = 3.8173$, $J_1(Z) = 0$ 。于是,在聚焦误差十分严重时,即 $1 - \rho ? / 2\rho ? \simeq 1$ 时,该系统的截止频率 ρ_1 为:

$$\rho_{\rm e} = 3.8173 + \frac{\lambda P_{\rm T}}{4 \times 2 \pi \omega_{\rm T}} \simeq \frac{\lambda}{4.4 \omega_{\rm T}} \rho. \tag{20}$$

(20)式中 $\rho_0 = 1/2\lambda d$,为相于系统截止频率。 因而, 短形光栅作为透照物体, 经成象系统 后,强度谱中的高频分量可以完全被衰竭掉, 接收而上得到 近似程度 很高的 正弦型光强分布。

实际的实验装置,采用栅距 τ = 0.635mm 的矩形光栅尺,光学系 统把栅距缩小为0.200 mm(它对应于光学扫描器中10个光电三极管),故横向放大宫率 M = 1/3.175,粗光栅位移测量系统要求把矩形光栅象变为正弦型,由(20)式应满足下列条件;

$$\frac{1}{M\tau} = \frac{\lambda}{4.4\omega_1} \cdot \frac{l}{2\lambda d_i} = \frac{1}{8.8\omega_1} \left(\frac{l}{d_1}\right) \tag{21.}$$

联合(14)式,可计算出 w_1 和z值、 $\diamondsuit l = 6.3mm$ (透镜直径),象距 $d_1 = 20.5mm$ 代入(21)

$$w_1 = \frac{1}{8.8} \left(\frac{l}{d} \right) M \tau \cong 8\lambda \tag{22}$$

式中 $\lambda=0.9\times10^{-3}mm$,它是我们采用砷化镓红外发光二极管照明光波的中心波长。将(22)代入(14)式得偏离量 z 为:

$$z = 8w_1 \left(\frac{d_1}{l}\right)^2 \simeq 0.6 \,\mathrm{mm} \tag{23}$$

计算结果与实验数据吻合, 观察到的光学扫描器视频输出波形如图 3 照片所示。换言之, 在系统聚焦误差十分严重时, 经过详细计算光学传递函数, 并获得重要公式(20), 从而揭示了矩形光栅正弦象的物理成因。

图 3 光学扫描器视频输出波形

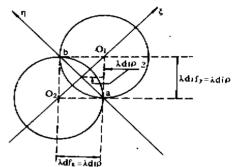


图 4

附 录

如图 4 所示,在空域中两光瞳的方式为:

$$\left(\xi - \frac{\lambda d_{1} \rho}{\sqrt{2}}\right)^{2} + \eta^{2} = (I/2)^{2}
\left(\xi + \frac{\lambda d_{1} \rho}{\sqrt{2}}\right)^{2} + \eta^{2} = (I/2)^{2}$$
(24)

它们的交点分别为:

$$a = -\frac{\sqrt{(1/2)^2 - (\sqrt{d_1}\rho/\sqrt{2})^2}}{b = -\sqrt{(1/2)^2 - (\sqrt{d_1}\rho/\sqrt{2})^2}}$$
(25)

由(24)得:

ζ

令 $B = ke\lambda d_i \rho$, $Z = \sqrt{2}AB$, 由(18)式得:

$$\mathbf{K}(\rho) = \frac{4}{\pi l^2} \int_{-A}^{A} e^{jh\cdot k\cdot k\cdot l\cdot p\cdot k} i\,d\dot{\xi} \int_{-\sqrt{A^2-\eta^2}}^{\sqrt{A^2-\eta^2}} e^{jh\cdot k\cdot k\cdot d\cdot p\cdot \eta} \,d\eta$$

$$= \frac{4}{\pi l^2} \int_{-A}^{A} \frac{1}{jhe\lambda d\cdot p} e^{jh\cdot k\cdot k\cdot di\cdot p\cdot \eta} \,d\dot{\xi} \Big|_{-\sqrt{A^2-\eta^2}}^{\sqrt{A^2-\eta^2}} \cdot e^{jh\cdot k\cdot k\cdot di\cdot p\cdot \eta} \,d\eta$$

$$= \frac{4}{\pi l^2} \cdot \frac{1}{jB} \int_{-A}^{A} \left(e^{jhe\lambda d\cdot p\cdot \sqrt{A^2-\eta^2}} - e^{-jhe\lambda d\cdot p\cdot \sqrt{A^2-\eta^2}} \right) \cdot e^{j\theta\cdot \eta} \,d\eta$$

$$= \frac{4}{\pi l^2} \cdot \frac{1}{jB} \int_{-A}^{A} \left(e^{jB\sqrt{A^2-\eta^2}} - e^{-jB\sqrt{A^2-\eta^2}} \right) \cdot e^{j\theta\cdot \eta} \,d\eta$$

$$= \frac{4}{\pi l^2} \cdot \frac{1}{jB} \int_{-A}^{A} \left(e^{jB\sqrt{A^2-\eta^2}} - e^{-jB\sqrt{A^2-\eta^2}} \right) \cdot e^{j\theta\cdot \eta} \,d\eta$$

$$= \frac{4}{\pi l^2} \cdot \frac{1}{jB} \int_{-A}^{A} \left(e^{jB\sqrt{A^2-\eta^2}} - e^{-jB\sqrt{A^2-\eta^2}} \right) \cdot e^{j\theta\cdot \eta} \,d\eta$$

$$= \frac{4}{\pi l^2} \cdot \frac{1}{jB} \int_{-\frac{A}{2}}^{A} \left(e^{jAB\sqrt{2}-\eta^2} - e^{-jAB^2-\eta^2} \right) \cdot e^{j\theta\cdot \eta} \,d\theta \cdot A\cos\theta \,d\theta$$

$$= \frac{4}{\pi l^2} \cdot \frac{1}{jB} \int_{-\frac{A}{2}}^{\frac{A}{2}} \left(e^{jAB\cos\eta} - e^{-jAB\cos\eta} \right) \cdot e^{jAB\cos\eta} \,d\theta \cdot A\cos\theta \,d\theta$$

$$= \frac{4A}{j\pi l^2B} \left(\int_{-\frac{A}{2}}^{\frac{A}{2}} e^{jAB\sqrt{2}} \cos\left(\frac{\pi}{4} + \theta\right) \cos\theta \,d\theta \right)$$

$$= \frac{4A}{j\pi l^2B} \left(\int_{-\frac{A}{2}}^{\frac{A}{2}} e^{jAB\sqrt{2}} \cos\left(\frac{\pi}{4} + \theta\right) \cdot \frac{\sqrt{2}}{2} \left(\sin\left(\frac{\pi}{4} + \theta\right) + \cos\left(\frac{\pi}{4} + \theta\right) \right) d\left(\theta + \frac{\pi}{A}\right) \right)$$

 $-\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-jZ\cos\left(\frac{\pi}{4}+\theta\right)} \cdot \frac{\sqrt{2}}{2} \left(\sin\left(\frac{\pi}{4}+\theta\right)+\right)$

$$+\cos\left(\frac{\pi}{4} + \theta\right) d\left(\theta + \frac{\pi}{4}\right)$$

$$= \frac{4A}{j\pi l^2 B} \left\{ \frac{\sqrt{2}}{2} \int_{-\frac{\tau}{2} + \frac{\pi}{4}}^{\frac{\pi}{2} + \frac{\pi}{4}} e^{jZ\sin\Theta} (\sin\Theta + \cos\Theta) d\Theta - \frac{\sqrt{2}}{2} \int_{-\frac{\pi}{2} + \frac{\pi}{4}}^{\frac{\pi}{2} + \frac{\pi}{4}} e^{-jZ\cos\Theta} (\sin\Theta + \cos\Theta) d\Theta \right\}$$
(28)

这里 $\Theta = \theta + \pi/4$ 并且 $\cos \theta + \sin \theta = \sin \left(\frac{\pi}{2} + \theta\right) + \sin \theta = \sqrt{2} \sin \Theta$

$$\cos\theta = \sin\theta \left(\frac{\pi}{2} + \theta\right) = \sin\left(\frac{\pi}{4} + \theta + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} (\sin\Theta + \cos\Theta)$$

于是:

$$\mathbf{K}(\rho) = \frac{2\sqrt{2}A}{j\pi l^2 B} \left\{ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{jZ\sin\Theta} \sin\Theta d\Theta + \frac{1}{jZ} e^{jZ\sin\Theta} \right\}_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$$

$$-\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-jZ\cos\Theta} \cos\Theta d\Theta + \frac{1}{-jZ} e^{-jZ\cos\Theta} \right\}_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$$

$$= \frac{2\sqrt{2}A}{j\pi l^2 B} \left\{ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{jZ\sin\Theta} \sin\Theta d\Theta - \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-jZ\cos\Theta} \cos\Theta d\Theta \right\}$$

$$= \frac{2\sqrt{2}A}{j\pi l^2 B} \left\{ \int_{0}^{\pi} \left\{ \cos(Z\sin\Theta) + j\sin(Z\sin\Theta) \right\} \sin\Theta d\Theta - \int_{0}^{\pi} \left\{ \cos(Z\cos\Theta) - j\sin(Z\cos\Theta) \right\} \cos\Theta d\Theta \right\}$$

$$= \int_{0}^{\pi} \left\{ \cos(Z\cos\Theta) - j\sin(Z\cos\Theta) \right\} \cos\Theta d\Theta$$

这里,根据光瞳的园对称性,已把 $-\frac{\pi}{4} \rightarrow \frac{3}{4} \pi$ 积分限,换为 $0 \rightarrow \pi$ 积分限 。于 是 $K(\rho)$ 化 为:

$$\left\{ \begin{array}{ll} \cos(Z\sin\Theta d\Theta = du) & \text{if } \int_0^x \cos(Z\sin\Theta) d\Theta = \pi J_0(Z) \\ \sin\Theta = v & \text{if } \int_0^x \cos(Z\sin\Theta) d\Theta = \pi J_0(Z) \end{array} \right.$$

于是:

$$\int_0^{\tau} \cos(Z\sin\Theta)\sin\Theta d\Theta = \pi J_0(Z)\sin\Theta \Big|_0^{\tau} - \int_0^{\tau} \pi J_0(Z)\cos\Theta d\Theta = 0 \quad (31)$$

同样可以证明:

$$\int_{0}^{7} \cos(Z\cos\Theta)\cos\Theta d\Theta = \pi J_{0}(Z)\cos\Theta \Big|_{0}^{7} + \int_{0}^{7} \pi J_{0}(Z)\sin\Theta d\Theta$$

$$= \pi J_{0}(Z)\cos\Theta \Big|_{0}^{7} - \pi J_{0}(Z)\cos\Theta \Big|_{0}^{8} \qquad (32)$$

$$\int_{0}^{7} \sin(Z\sin\Theta)\sin\Theta d\Theta = \int_{0}^{7} \sin(Z\cos\Theta)\cos\Theta d\Theta = \pi J_{1}(Z)^{(6)}, \text{ th}$$

$$\mathbf{K}(\rho) = -\frac{2}{j\pi l^{2}B} - (j\pi J_{1}(Z) + j\pi J_{1}(Z))$$

以及

 $=\frac{4\sqrt{2}A}{l^2B}J_1(Z) \tag{33}$

(32)和(33)式 ΠJ_{a} 、 J_{a} 分 別为 贝塞 尔零 阶和一 阶函数 。当Z=3.8173,即 $\sqrt{2}AB=3.873$ 时, $J_{a}(Z)=0$,据此,可知,在聚焦误差时、系 统的截 止频率 ρ_{c} 与 相干截止频率 ρ_{a} 有下列关系。

$$\sqrt{2} k \epsilon \lambda d_1 \rho_2 \sqrt{(1/2)^2 - (\lambda d_1 \rho_2 / \sqrt{2})^2} = 3.8173$$

戍

$$\frac{\sqrt{2}}{2}\pi l^{2} \varepsilon \frac{\rho}{\rho_{o}} \cdot \frac{1}{\lambda} \sqrt{1 - \frac{\rho^{\frac{2}{5}}}{2\rho_{o}^{\frac{2}{5}}}} = 3.8173$$
 (34)

当聚焦误差十分严重时有[7]:

$$1 - \rho^2/2 \ \rho_0^2 \cong 1$$
 (35)

根据(14),(34)式化为:

$$\frac{8\sqrt{2}}{2}\pi\omega_1\cdot\frac{1}{\lambda}\cdot\frac{\rho_c}{\rho_0}\cong 3.8173$$

或

$$\rho_{c} \cong \frac{\lambda}{4 \cdot 4\omega_{1}} \rho_{o} \tag{36}$$

参考文献

- [1] J.H. 麻德门著、稻达三、薰经武、颜本源译: 付里叶光学导论、北京、科学出版社、1976: 116—117
- (2) 同

上, 1976: 133-134

(4) 同

<u>J.</u>, 1976: 111—142

(5) 同

L. 1976: 138—139

(7) 同

ļ.

- <u>1.</u> 1976: 142
- [13] M.玻恩, E.沃耳夫著, 黄乐天, 陈熙谋, 陈秉乾译: 光学原理, 第五版,北京, 科学出版社, 1981。641—642
- (6) Watson G.N., A Treatise on The Theory of Bessel functions, 2nd. cd. cambring at The University press, 1952; 20-21