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ABSTRACT Using variational methods, we study the existence of the anti-periodic traveling
wave solutions to a forced two-dimensional generalized KdV equation.,
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0 Introduction

The two-dimensional KdV equation was first derived by Kadomtsev and Petviashvili in
197087, and it is also referred to as the KP equation, In [2], Aizicovici and Wen studied the exis-
tence and uniqueness of anti-periodic traveling wave solutions to a forced {inhomogensous) general-
ized KP equation with the aid of monotonic method!#) and Schauder’ s fixed point theorem.

In this paper, we use the variational methods o study the existence of antiperiodic traveling
wave solutions to the KP equation, we allow a broad class of functions f(u) in the KP equation un-
der investigation,in contrast with f(«) being monotonically nondecreasing in [2].

1 Reduction of the Problem

We consider the generalized inhomogeneous two-dimensional KAV equation (see [17,[27,
(51
{ + [f ] + ewe} + P, + = 0, (t=0,5y€ R, 1

where f€ C'(R) ,a>>0,and 8+0 are given constants, while g denotes a real-valued function of z,y
and z.
We are interested in the existence of anti-periodic traveling wave solutions to Eq, (1) ,of the
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form

u(xyot) = Wz z = ax+ by — we,
where >0, and 4,w are real constants, consequently, we make the natural assumption that z de-
pends on z only ,i. e,

gz, 1) = glax+ by — wt), with z:R— R

Straightf orward computations then show that (1) reduced to the fourth-order ordinary differential
equation

U () — U2) + 7;—;f(U(z)) + g(zx) =0, (2)

where
c =g (wa — FF),Y = a'a?,g(2) = alatg(z). (3)

‘We consider {2) in conjunction with the anti-periodic condition
Uiz+ Ty =—Uz)z€ R, (4)
where T2>0 is fixed.

Let fe CC(R) and g € C(R).

Define G(2) such that G'(2)=g ().

It is easily to see that in oxder to prove the existence of the solution of (2) and (4}, it is suffi-
cient to prove the existence of thlle anti-periodic solution of the {following second order ordinary dif-
ferential equation

— U(2) + d/(z) + F(U(2)) = G(=2), z€ R )
Uz+ Ty =— Ulz), zE€ R
where
Fl©) =—7finy, z€ R
More generally , we consider the following second-order anti-periodic boundary value problers,

—z+ Az + V' (D) = b,z E R'] &)
H0) =— K1)
where A= (a,).x. is a symmetric matrix, 7>0,VE O(R,R) A€ L3 (R, R).
2 Vanrational Methods and Main Results
Consider the Sobclev space
H=HF(0,7].R) &)

On H we define the following inner product;

T
< x.y»=j (2 ¥+ x+ )de,¥ ny€ F,
1]
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The norm defined by < « , « 3> on H is the uswal &' norm;
T T
Il = [ 12t + ] 1alaa0d @®
o o
Define the subspace of H;
E= {z& HlK0) =— KD}, ()
and define functional 7. E—~R as .
T
7@ ={ {3131 + § (Ana + Vi@ — )& Y aEE 10)
0
Then it is easy to prove the following variational principle;
Lemma 1. The critical points of ¥ in E is the solutions of (6.
Lemma 2. (Poincare’type inequality [4]) For all & E,we have
T
1x0] < 3TH( 1ol 0K T an
Qo
Lemma 3. On E the usual £ norm is equivalent to the following norm || || .
T
Izh = (] lal,  vz€E az
]
Proof. By Poincare'type inequality (Lernma 8}, we have that for all 2€ E
T 'I! e
_[ |2f2de < T max | K6 |2 < —f | 47de, (13
o T 4 4]
T T T T
[ o< aar+ jana< {1+ §) [ 1o as
il ] o
Lemma 4, F(z) is weakly lower semicontinuous, i. e, if z—>x weakly in E then
Fla) < lim infF(z,), (15
Proof. Suppose that x,—x weakly in E,then
T T
[ lefar <t int [ \ialods 16
Q o

Moreover, by the Rellich-Kondrachov embedding theorem, we have that = has a subsequence, still

denoted by x,,such that 2~z uniformly on [0,77] and
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T

[[$¢am2> + Via) — CEIE

{( Tidn,n) + Vo) — (b |

B}’ (15) , (17) nit fOlI.OWS that
Fi -.<.,lim21f7(a:)

Levuma 5,  Considering system () ,suppose

%(Ar,xb + V@D 2— 2t — MY z€ R

43
1 —4—72>0

where « and M are two pesitive constants. Then
(i) F(z) is coercive in E,i. e, F{z)-+oo whenever || z; || =oo as n>o0,

(i1) F(2) is bounded from below in E.

Proof. (i) By the assumption (18) and inequality (13),we have
T

r{ %(Ax.x} +V(x}}dt>— %I z|%dt — MT =2 — % Iz} % — MT.

-]

By Holder’ s inequality and inequality (13) we have

T
T
[ e inle Nzl < I8l

o

|5-'||L3

B}’ (10),(19), (20) s we have
(1 _ = e _ T :
F@=(g—57) I3l — F Al |2l

By 1—%?‘>0:it follows that F(z)—+oc when || & | g= | & || 2—>oo.
(ii) From (21} ,it is easy to prove that Fis bounded from below,

Now we prove our main result;

a7

(18)

19)

20

(213

Ny

Theorem 1  Suppose the condition (18} of Lemma § holds, then for any 0<T~~<“i , System

{6) has at least an T—anti-periodic solution.

Proof.
theory . the minimum solution x{£} is C?(R, R") soluticn of (g)0%7,

By Lemma 4 and 11.F(z) attins its inflowm in E Hence by the standard régularity

Example 1. Assume symmetric matrix A= (a;)u, is semipositive definite and V() = = |z
|#, #=2. Then the condition (18) holds for all 2=>0. Therefore () has at least an T-anti-periodic
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solution by Theorem 1. Specially , considering system (5),if ¢=0, F(2) = | z|* 2z, p=22 , then (5)
has at least an T-anti-periodic solution for any 7>0.
Example 2. Considering system (5).let c220 and F(x) = cosx, v& R, then (5) has at least

an T-ant-periodic solution for any T2>0. In fact,in Theorem 1,let n=1,A=c>20,V{D = _[Dcos.::lx

=sinz By sinze= —1 for any x& R, therefore condition (18) holds for all a>0.
Remark. In [27],the suthors only consider the case that F(z) must be monotonic. In our Ex-
ample 2,F{s) =cosris not monotonic in real line.
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