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A method for constructing a high-accuracy prediction model for
zirconium alloy fatigue life based on the three-parameter Weibull
distribution
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Abstract: During the operation of nuclear reactors, zirconium alloy claddings are subjected to significant cyclic
stresses, necessitating an accurate evaluation of their fatigue properties essential for preventing structural failure.
This study proposes a high-accuracy prediction method for the fatigue life of zirconium alloys by employing
fatigue test data from alloys subjected to two distinct heat-treatment conditions. A three-parameter Weibull
distribution model was established using the probabilistic weighted moments method to construct reliability-stress-

number (R-S-N) cycles curves. These curves were rigorously compared and validated against those obtained from
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the traditional Basquin model. The findings indicate that the R-S-N curves derived from the three-parameter
Weibull distribution demonstrate superior fitting accuracy and significantly outperform the conventional model.
This advanced modeling approach provides a reliable and effective means for predicting the fatigue behavior of
zirconium alloys, offering significant implications for the structural design and safety assessment of nuclear
reactors.
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Table 1 The fatigue test results of M-state zirconium alloy sheet

e K J) S/MPa TEA BN
220 196 473 127 411 210 834 157 364
200 286 390 264 753 180 473 395 287
180 981 025 835808 698 632 531 429
160 3225958 4 696 840 4028 641 3762317

150 9664 874 8 853 169 8212562 11 024 655
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Table 2 The fatigue test results of m-state zirconium alloy sheet

e K F1 S/MPa TEA W EL N
270 96 321 105 836 83 697 91 554
250 236 933 285 779 250 848 326 052
230 906 844 807 431 929 727 850 073
210 4580 726 4378 596 4959910 5258 635

3 R-S-NHEEBESSHMH

30 =ZHEMRIHTIER-S-NHEERGE

AR 2% 103 2 b i 57 10 s | 4 IR L3 = 2 MO IR 0 A O i AT S HOR R . 20 5K MZS R m
SREA Y 3 LA [A) 1 ) K F B Bl Al A (19)  BSZ SR E IE S H B L C M R0 M8, #4575 (18) Bt A7 3R
LRAEL R ARG B C R WS B, N 2% 3 T .

R3 IMESERSTEWEESHE

Table 3 The fatigue life correction parameters of zirconium alloys in two states

B 6.3173 0.037 9
C 4.492 4 4.607 5
# 5.080 7 11.348 4
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Table 4 The probabilistic weighted moments estimates of fatigue life data of zirconium alloys in two states
]\/Alw,0 5.0810 11.348 0
]\/A[M‘O 2.5895 5.699 0
M, 1.7413 3.809 0
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Table 5 The three-parameter Weibull distribution parameters of fatigue life of zirconium alloys in two states

M7 m &
R Fik2 ik k2
B 7.492 3 2.240 1 1.728 6 36.040 6
A 1.1817 0.4158 0.170 0 2.668 7
0 3.9717 471217 11.196 5 8.720 1
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Weibull distribution method with 5%, 50% and 95% reliabilities
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Table 6 The fatigue life estimates of M-state zirconium alloys with different reliabilities

9% 57 77 1 /I
fix K 11 S/MPa - -

] 4E 5% AR 95%
150 13 838 139 5077 624
160 6332914 2 488 875
180 2344 578 573 226
200 587 583 171 286
220 203 303 60 145
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Table 7 The fatigue life estimates of m-state zirconium alloys with different reliabilities

% 55 75 1 /IR
KV F7 S/IMPa
T[4 5% Al 95%
210 5573533 3530079
230 1171635 815 166
250 367 054 211 207
270 106 785 71195
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Fig. 3 The S-N curves of domestic zirconium alloys in M and m states based on the Basquin method with 5%,

50% and 95% reliabilities
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Table 8 The goodness of fit of the two models characterized by the relevant parameters

M2 m 7
ZH Wik =ZB0RAR =S80 R ViR =ZH0BATUR =S80 R
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R 0.9559 0.962 0 0.970 3 0.975 2 0.9913 09915
F 17.025 3 30.498 4 34.553 4 31.697 5 109.416 7 120.224 1
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Fig. 4 The comparison of S-N curve fitting between the two methods with 50% reliability



10 TR K F F IR %48 %

4 & it

BT 55 B 57 VR BB IR B E A, A [ 57 Ze-4 B 2 AN ] R Ak BHCRR 285 5 45 < B9 9 57 4 6 000 O B dls
S, U T RA T AR A T = S BORUA R o0 A B 0 05 Pk RE T B BE - I ) - A7 A (R-S-N) T £k 9
J& T NIRRT RE B2 T A% Gt Basquin T oK BB BUAL S T7 0k, JF XS 2 PRI AT T HE 0 A L RN

1) 35 A AR E AR AL A 1) = 2 RO A R 53 A 82 5 TN ASE R HC 0 o 0 B W 3 e T AL 4L Basquin B
Xt B R 97 MR BE 0 T 5 T AT R4 A A

2) 2R F2E T MR RAE A T HE S 2 96 4 SKOT R AU A 19 = 2 BOsA IR 0 A SR B AT A 25 40 E A 2
AR ) 2 B0 (E 22 5 08 = B BB A OR o A BAT 20l il

3 ) T M AN R 1 W) A = S MO R 3 A i 9 5 v AR R B R A T R D UL T R
i, £ B Matlab 2 T B o] 5280 200, B ORI AN (B

S % 3k

[ 1] Duan Z G, Yang H L, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water
reactors[J]. Nuclear Engineering and Design, 2017, 316: 131-150.

[ 2] Yang J Q, Steinbriick M, Tang C C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding[J].
Journal of Alloys and Compounds, 2022, 895: 162450.

[ 3] BREZ, skadu, TRV AR . K MERRRLZH A FURORL JT A PR BE 43 T (M. e R U5 - Wy JR 6 R DR i JiAt, 2020.
Chen P, Zhang S C, Zhang Y C. Performance analysis of PWR fuel assembly and fuel element[M]. Harbin: Harbin Engineering
University Press, 2020. (in Chinese)

[ 4] WIREN, REE, MISC, % 455 T PORENAT ) T FE 8t (0], #RHRES:, 2019, 9(9): 861-871.
Pan R J, Wu L, He W, et al. Recent progress on In-pile behavior of zirconium alloy cladding materials[J]. Material Sciences,
2019, 9(9): 861-871. (in Chinese)

[ 5] B BREET LT, 55 . rp 748 RO 35 5 4 0 B2 U S R AT 52 08 e (D). T PR 2427431k, 2017, 40(4): 24-34.
Wu L, Qiu S Y, Wu X Y, et al. Research progress about the effect of neutron irradiation on the microstructure of zirconium
alloys[J]. Journal of Chongqing University, 2017, 40(4): 24-34. (in Chinese)

(6] BRAR, VFILE, T, 45 08 b ouh o & G 05 28 -9 5717 B 52 i) WL BRBIT 52 [0]. A7 €042 8 T A, 2024, 14(4): 43-50.
Chen L, Xu J T, Wang P F, et al. Study on the effect and mechanism of hydrogen content on the creep fatigue behavior of
zirconium alloy[J]. Nonferrous Metals Engineering, 2024, 14(4): 43-50. (in Chinese)

[ 7] 545, ik, RIAR, 55 . [ =3l & & 0% 57 tEsewF9E [J]. h E % H, 2020, 13(6): 842-846.
Wu J, Yang Z B, Zhu Q M, et al. Research on fatigue properties of new pickaxe alloy China[J]. China Nuclear Power, 2020,
13(6): 842-846. (in Chinese)

[ 8] Bka4x%y, 86k, B4 2R, 55 . 9% 55 S-N Ith £ T A% B 3k JR 23R ], BHH R 5 TR, 2023, 23(13): 5390-5411.
Zhang J B, Hu Z, Zhang J L, et al. Review of advances in fatigue S-N curve prediction models[J]. Science Technology and
Engineering, 2023, 23(13): 5390-5411. (in Chinese)

[ 9 ] Murakami Y, Takagi T, Wada K, et al. Essential structure of S-N curve: prediction of fatigue life and fatigue limit of defective
materials and nature of scatter[J]. International Journal of Fatigue, 2021, 146: 106138.

(10] XK, 5k 2%, 5k B, A5 . 6 I Jas sk 22 it e S0 5 73 iy DR 9000 07 % [0, TR R 22441, 2023, 46(3): 94-102.
Liu T Q, Zhang G X, Zhang T, et al. A fast life prediction method for hard metals under multiaxial high-cycle fatigue loading
[J]. Journal of Chongqing University, 2023, 46(3): 94-102. (in Chinese)

[10] R4, X0, foy 2 R, 45 . B TS 254y S-NV 2k i 2k Mg 55 55 o 0N B (7). 35 DR “2 2241k, 2023, 46(3): 84-93.
Zhang T, Liu K, He A M, et al. A linear fatigue life prediction model based on dynamic residual S-N curve[J]. Journal of
Chongqing University, 2023, 46(3): 84-93. (in Chinese)

[12] Barraza-Contreras J M, Pifia-Monarrez M R, Molina A. Fatigue-life prediction of mechanical element by using the weibull
distribution[J]. Applied Sciences, 2020, 10(18): 6384.

[13] Lu C G, Wei Z Q, Qiao H X, et al. Reliability life analysis of reinforced concrete in a salt corrosion environment based on a

three-parameter Weibull distribution[J]. Chinese Journal of Engineering, 2021, 43(4): 512-520.



% 12 4 Wk, F AT =ZARBA RO FOELSLREF A4S EHETN AR M EF & 11

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Barbosa J F, Correia J A, Freire R Jr, et al. Probabilistic S-N fields based on statistical distributions applied to metallic and
composite materials: state of the art[J]. Advances in Mechanical Engineering, 2019, 11(8): 168781401987039.
HRIRAE, £ 4, P, 45 BT =S UM IR S A A5 L 1Y B 40 B X e M A S i O A A VAN O s 0], SRS M 22 AR, 2021,
42(2): 213-220, 230.
Han Q H, Wang X, Lu Y, et al. Corrosion fatigue life assessment method for cast steel and butt welds based on three-parameter
Weibull distribution model[J]. Journal of Building Structures, 2021, 42(2): 213-220, 230. (in Chinese)
Pedrosa B, Correia J A F O, Rebelo C A S, et al. Reliability of fatigue strength curves for riveted connections using normal and
weibull distribution functions[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
Engineering, 2020, 6(3): 04020034.
Halfpenny A, Chabod A, Czapski P, et al. Probabilistic fatigue and reliability simulation[J]. Procedia Structural Integrity, 2019,
19: 150-167.
Strzelecki P. Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull
distribution[J]. International Journal of Fatigue, 2021, 145: 106080.
Yang X Y, Xie LY, Liu Y Y, et al. A review of parameter estimation methods of the three-parameter weibull distribution[C]//
2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR). Hangzhou, China. IEEE, 2023: 20-31.
FEWRAR, S, MR ER, & . = S EUd AR IR 40 A S80I O 1k HU A (0], TR AR 2 i (B TR, 2005, 18(3): 301-305.
Yan X D, Ma X, Zheng R Y, et al. Comparison of the parameters estimation methods for 3-parameter weibull distribution[J].
Journal of Ningbo University (Natural Science & Engineering Edition), 2005, 18(3): 301-305. (in Chinese)
Toasa Caiza P D, Ummenhofer T. Consideration of the runouts and their subsequent retests into S-N curves modelling based on
a three-parameter Weibull distribution[J]. International Journal of Fatigue, 2018, 106: 70-80.
XS, 8, 224 2% 158 AT SR S AT Weibull 53 A0 2 B M AL 25 (], 313 1% 2% 40, 2004, 21(5): 609-613.
Deng J, Gu D S, Li X B. Parameters and quantile estimation for fatigue life distribution using probability weighted moments
[J]. Chinese Journal of Computational Mechanics, 2004, 21(5): 609-613. (in Chinese)
Castillo E, Fernandez-Canteli A. A unified statistical methodology for modeling fatigue damage[M]. Dordrecht: Springer,
2009: 33-90.

(% F)



