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Combined stress effects of polystyrene nanoplastics and Cu” on
Pseudomonas stutzeri
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Abstract: The coexistence of polystyrene nanoplastics (PS-NPs) and Cu® in wastewater can induce compound
stress effects on microorganisms. This study investigated the effects of PS-NPs and Cu’" on the growth, nitrogen
removal, and biochemical characteristics of the aerobic denitrifying bacterium Pseudomonas stutzeri, and further
elucidated the stress mechanism through transcriptomics analysis. The results showed that under exposure to
50 mg/L PS-NPs, bacteria growth activity increased by 25.3% compared to the control, accompanied by enhanced
nitrogen removal and significant upregulation of genes related to ribosome function, the tricarboxylic acid (TCA)

cycle, and ABC transport pathways. In contrast, under 10 mg/L Cu®" stress, bacterial growth activity decreased by
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83.2% compared to the control, with severe inhibition, cell membrane damage, and marked downregulation of
ribosomal, nitrogen metabolism, and ABC transport pathways. Genes related to extracellular polymeric substances
(EPS) secretion and cell membrane synthesis were significantly upregulated. Under combined stress, Cu™" exerted
the dominant inhibitory effect; however, PS-NPs promoted EPS secretion, which, along with PS-NPs themselves,
adsorbed part of the Cu®" ions and mitigated their toxicity.
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B R 1, A MR REE T AS AR IR pH L C/N Hb W 4 TR S G 3R AT, B 4R R B TR P B
AR Y W 2% SO EXS T A SR RO B0 AR 3R AT G ) AT 5 v G A SR A TR SR v A B A

/AN IR RHE S — 2 Xeis Je g TRk iz . HAT, 38 5K 8 £ (microplastics, MPs) %
SCR/NTFS mm (UKL TR /N T 1 pm 8 80RE 38 8% TA R R 40 K B BE (nanoplastics, NPs) 7 3T 4F K i 5
e BN K IR R B L IO R IR A B S e g oK SR RE AT LA finh e Ak AR ) 0 AT I I RN e R TR R A L B
A A ZE AL, B GE A K RN, B T R S U W AR T A e i aE ", 5 K T MPs O & T 3.2~
1 106.0 Fiki , N~ Z4F 100~1 000 um.  LLSEEPK 42 500 wm , 25 5 1.05 g/em™ 55, 0 %195 K Hh MPs & & 7]
15 0.22~75.92 mg/L. #EAT5/KAE PR GE ), MPs TEAUAE R 25 SORUK R BT U145 A F T 7™ A2 R #Y NPs!™,
Frit— 2B iT e R B A 4 . IR 206 90K 388 (polystyrene nanoplastics, PS-NPs) £5 ¥ £8 %E , AN 2 8 A4
R fif T2 B RT3 M 00 A AILAR G 0, 76 S5 50 v g VR A R R Liu S8 58 2 B, 1 mg/L 9 PS-NPs 4171 il
TG e 0 A R AL R R AR RE R DL R R AR R O LA T U8 i A AR D R A K i R Ak
PR Z 26 . Huang 25" % B, 20 mg/L 1 100 mg/L /Y PS-NPs X 7% 14 75 U8 A9 I & PE GE A W 2 I /E H .
H AT, B A 0 58 A AE 7% 000 B A= 0 BE & 2 TP Al T PS-NPs AU 521, 5& T PS-NPs X A1 56 T it 181 /Y 52 i i A
5T

Cu EMUE A K W oh 75 im0 2, (H M B Cu™ il s B A2 0 305 1 10 o) DN 453453 . 41 G 235 #4) A 3 g
B TR A AL T CRE DL AR 2 Tl R K A B A T R A LR L s B A Yang SR B
5 mg/L 1Y Cu™ 5 e PR A8 2 A A R 5 U8 14 15 1 B 3F B K . Ochoa-Herrera %™ #F 58 & B, 50 mg/L 1) Cu® X} i
b B RN ST Ak T S 2 B i A W B VR R L BB E 140 hs , BoRREE A KR . EK R AR 2 RS
e IAF | B T/ SRR K VE e 2 AR A T Cu ] TRl MR 2 R T Y, T AR R K h A
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Pl AR A it G AR M B Pseudomonas stutzeri( GenBank & 5% 5 FI713783) , W H H [ b 18 A 90 11 Bl 18 7K
EH G PRECR 5 O CICC 10428 Tk A2 M SR T 19 1 R T2 R 5 77 2 (TS A 15 97 3k ) | il 30 552 56 >R T S i
fE1E 2 5L (DN B 32 500, MBI R O R RS 150 gRE AR, 5.0 g KRG E A RN 5.0 g & Ldm, A
1 mol/L ) HC15{ NaOH % ¥ i 15 pH £ 7.0~7.5. B AL IE 77 5 &% 0.72 g i # (KNO,) ,3.0 g — 7K i %)
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i (CH,,0,-H,0),4.78 g+ /KW lik & — 44 (Na,HPO,- 12H,0) , 1.24 g /K W f2 — 444 (NaH,PO,-2H,0) ,4.0 g
LB (NaCD A 3 mL i s e Rl . o, B E T £ % 3.01 g LKA B8 (MgS0,-7H,0) ,3.36 g —
KA B R SR (MnSO,-H,0), 1.12 gl /i (H,BO,) , 3.00 g-£ /K & Hi iz £ (ZnSO,- 7TH,0) ,0.30 g b 7K A B B2 W 2k
(FeSO,-7H,0), L} 0.6 g LK H AL G (CaCl,) . #4575 7K H PS-NPs Fll Cu™ 1Y & = , #E £ 50 mg/L ) PS-NPs £l
10 mg/L (1) Cu™ AT 500 . SLi B 445 4, R I I PS-NPs Fl Cu™ (1) CK 41} %F B4, 50 mg/L ) PS-NPs i
PS#H,10 mg/L [y Cu* > CO %1, 50 mg/L iy PS-NPs+10 mg/L [ Cu> > CP 4 , 43 HI4K 5% PS-NPs . Cu* }t — % &
A W 38 X T AR 0952 1

W 52 H: S5 0 TR RV R IR 5% (W7 V) Fe A 2 A AR B AR R L D150 r/min 28 °C AR #EAT R A% . 4 i M4
FKLE4 0.6.12,18,24.30.36.,42 .48 .54 h i Z) (%) 20 B4 15 32 0, 8 0 0.22 pom P8 R 38 5 RAS KRR . T E K
FENO;-N \NO,-N NH-N T i ¥ B . NO3-N R F 48 50 43 60 BE 100 72 , NOS-N R A N-(1-Z8 38 ) - & B B
0 7E , NH;-N R FH 7K A7 B2 -0 SRR £8 73 5606 BE ¥ ) e =

P 23 BCAE V8 VB T B K BB 2 TP R T W' B ) 0 R % R D S T, R T A TR R T AR T A% S
B 20 15 9% 24 h 5 BRI AR RS BT AR A8 X (DI B AR R IE PERY
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A N Ry 5L 5 2H A0 T AR 5 N, O CKOZH 20 TR 2 .
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W AR K5 57 24 h 5 45 S0 56 21 B RE 68 BR AR AR AL FE AR AT RN . SR FH IS 14 48 (reactive oxygen species, ROS)
00 32X 55 6 D A8 TR 1 L N ROS ZKF (bt RS £ RHCA BR A |)) 5 R JH FLIR I A (lactate dehydrogenase,
LDH ) 1 A5 0 2 770 &5 45 00 20 181 LDH B B 5t (b 30 R 3 ) 5 il 82 1 38 JRL il (nitrate reductase, NR) F1F i 2
348 i i (nitrite reductase, NiR ) 9 3 P4 5% FH a7 60 M0 5 (5 MRS SR A D B BR 23 7)) 5 R 14 SO0 I 55 3
1t F1 4 1 8% (ZEISS Gemini 300, 7[5 ) WL %< .
1.3 MMBEYHRRES LR

K BH B T W B5 e B 45 S 56 41 K5 9F 24 h 5 AR A R A1 3B & W (extracellular polymeric substances,
EPS)™ . R H BCA I & (Jb 5t &35 ) W EPS Hh ity 2 110 75 4, SR FH AU — B 192 v DU o 22 M 3 ok o 4
HUAY EPS Y& T -35 °C T ¥ U 148 i B 48 K , R A FTIR Y6 3% /X (NicoLet iS50, Thermo, USA) il & 4 000~
400 em™ K F L0 RS I8 Eodis 10—k b B L R 2 T RE X 4% T BB I (ESCALAB250Xi,
Thermo, USA) £ 0~1 200 eV {i [l F X} EPS Fy K #F 47 43 Bl 4, %5 C 1s N 1s F1 O 1s 70 & #E47 & 4
CEEi

BEAE B $E U EPS Ji 1 B AR LA 5% (17 1) 42 i 25 25 92 50 21 Bl A 1 3% Bk v, 92 30 20 1) 35 W) il 5236 Wi
B 45 S0 2 1 % 24 i) 20 TR I X% S 50 2 A R 1) 2B RTE M 5 X L SR 22 B EPS TR B 19 A KT L %5 58 EPS
TE T BRI B PS-NPs Hl Cu® 3 o 2% 4 19 4 ] .
14 HRAZHH

W 4% S B 20 15 57 24 h S 1Y TR RO HEAT e Sk L Y A3 AT, R A R G AR W R G RHEUA PR R AT
JEIN o AR 5T AR L RN 3 DR 4 R4 B (KEGG) X7 A1 ik 47 v B, S T g 6 ROOFar M ARk 42 . 221
B TR RS /T WSS B B S A5 (FPKOMD) X S [ R AR 22 0] 1) 52 s T R5GHE AT I3 — Ak, 40 A R 58 5 AN ) 24 22 )
B 225 RN . 227 FIKIE N (DEGs) N|Log,FC>1 HiA% 5 P{EH<0.05 A A .
1.5 HE\ESHELE

1t 5 25 50 B (ANOVA) K6 36 45 5L 1 W 5 M, P<0.05 i, 8 dls oA 3Pk 22 % R e R UK [ # R 3%
7o K Origin 2021a 5 AT A
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A 3EATh o B R A

BRIk 1) B8 EHE B A L 1 (o) ~(d) i o | &L 1(b) BT, A B CKO AL, PS 21 B ik Xt Al 40 11 25 Bk ik 2 T 42
i, T8 Bk 24 h 48 h A Bl R 25 B R0 98 15.2% . 73.7%, T CK 20 1 #k 75 24 h .48 h i £ BR R38N 7.5% .
61.6%. CO 4Lk 24 h 48 h B 2 £ R R0 0 2.7% .7.9%, H 54 h Bl 225 B RAUH 27.5% , W] Cu> *f
TRk (18 16 R oA JE o B L3 5 Cu X TR R A K 0 T S B AR AT . CP A1 TA K 24 h 48 h i A L B
RO M 9.6% 45.1% , 7 54 h A BH 1Y 25 5 3R 03k 72.6% , % B PS-NPs [ 77 16 25 i 1T Cu® X B8 Bk i &Ll 411
il VE

W 1Ce) () Fm , 5 CKALARLE , PS ZH 7 il 20 A 22 ZUB 52 06 0 0% Bk TR 5 4 T, 33X 55 1 2 % A 3 R 2 i
IS AL AR (E JE B i AR Ak CO ZH B Bk A8 280 2 3k o R v 1% S il 20 R 2 U AR R ] S G o CP 2B A R 1Y
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Fig. 1 Growth activity and NO;-N, NO3-N and NH,-N concentrations of bacteria in each experimental group
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2.2 EHRRTERME T B A AL M RE R {35 0 5R

PRI A T W 5 A 0 2 S AR I PN R R RO, BT R 2R W AR R A E B R, AT AR 40
P R A N, 5 B DNA AR SRR BT 45 AR ) o3 - I SRR B A5 I 2(a) BT, PS 41 TR AR 9 ROS 7K F
AH L CK AN T 15.3%(P<0.05) . /48 PS-NPs — & f B L3 T Wbk S AL R ORI i B I R 51 R 13 b
AR B AT ER IR, COA MM ROS/KT- % Ft, 5 CKAMILIE N 1 115.5%(P<0.05) . CPAH
Pk ROS /KA FFTF &, b CK4H BT T 110.3%, 5 CO4 1 ROS /K 43T, £ Cu” = 2 A Whia i S 40 H
=R A GUESE S

4 A1 A 1) 20 6 R 461 405 B, LDH 23 DA P B 5 HE R, R LG Sk I s LDH B Rt ok 26 AiF 41 it B 1Y) o 4
PE, W 2(b) rzs , PS 41 B #% 1) LDH B 5 CK 4L HL 25 AN K. CO 411 ¥k (19 LDH B b 2 39 i
(P<0.05) , #H b CK 4035 7N 1 163.4% , 2= W] Cu® Jiir 380 0 T b 3 B 1 8 325 A9 &40 O B33 405 . CP 2 T R 1 LDH B
B L CKZHIE N T 94.7% , R WIS 4 30 75 %0 40 187 15 B 1 6 3 (0% 40 M 452 495 , {2 PS-NPs £7 7 i} LDH B il it
AR T Cu® gt 3 (P<0.05) , 7 UL PS-NPs — 5 72 B 2 fift 1 Cu® X 240 Jifd J Ay 461 405

PS-NPs 5 Cu” {30 F 4540 Sl AL T8 B89 NR G PE AN & 2(c) FF /R . PS4 F#R AU NR I PE 5 CK 4 A1 He &8 2
$& T+ (P<0.05) . CO 41 I £k /19 NR % M AH b CK 41B# K T 76.4% , CP 21 I bk 19 NR I 1 A8 th CK L FE (IR T
50.2% , 16 W] Cu® B 77 76 S 4061 T 40 5 9 NR 3% 7 (P<0.05) . B4, CPZ4A NR G S COA M 8% T+
(P<0.05) , 3% MG P (4 1 B2 Z6 W1 T PS-NPs fE0E — R 1 28 ffk Cu™ X Bt &0 A9 3 ikl /2 FH

PR AR (9 NR 36 P a0 18 2(d) Fr 7 o [RIRE |, % 30 PS 20 P B 9 NiR 58 2 3 14 T &5 (P<0.05) , 1fif CO Fl CP 41
K 9 NAR 375 P 35 38 5 35 1% (P<0.05) . CP 40 Y NiR I 1 55 CO 4L A 1 .3 | T+ (P<0.05) , X 5 CP 20 W fil§
R R IR AHFT , U] PS-NPs I fE7ERB WS — & R B D28 M Cu™ g [ 1) Al AU R 2
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Fig.2 ROS level, LDH release, NR activity, and NiR activity of bacteria in each experimental group
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W 3 T 7%, CK ZH 0 B Bk 52 S FTIR 200 o JURE A0 376 , 25 M 52 4K . PS 21 LR 3] 4 2 o R B0k A 241 74 141 58 7
— L, WRHRORE B 2 B R SR AR R B R, SRR A TR R T SRR R . AR MR, COH R
PRAZ 450, 2R T8 31N , 4 B 28 1 2 400 R B W i 4R v, MR S R AR T W AR Ak . CP 2 T R 1Y) 32 AR
5 5R 3y ™ EE WS B K i SRR S A A R AE — i, 5 PSAI IR AR . LR E5 SR 5030 T PS-
NPs [ {7 15 £ SR e 05 412 1 40 B Y SR 4R (B Co® X6 4t B 0 4100 i 7 TS o 48 35 5, Co™ S i 38 R 52 45 i 38 34 %6
2 P ™ A A
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Fig.3 Scanning electron microscope images of bacteria in each experimental group
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T K 4(a) s, 5 CK UM L, PS 2H I #k EPS & &% A1 B .28 4k (A ja 4 109 5 HeoA ris in , &
2H 3 0BG N AE 45 EPS B9 i K PR3 0 F A AT RO Y i SR AR T CO RN CP 4 & Bk (19 EPS B\ i K IR BE 3
It B F s e T R . A IR ARGE S R B, Xie SR B Cu BB {45 A4 W i h EPS
S THE I H EPS R 115 2B i (9 A N 0.93 34 n F) 1,99, AJ WL, Cu> 2 i 1 bk 77 4E B £ EPS. Ith4h,
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Fig.4 EPS content of bacteria in each experimental group and growth activity of bacteria before and after removal of EPS
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A £k EPS M1 Bk EPS J5 B MR 7E M0 T 1 A= KA B an 18 4(b) iz o Bk EPS J& B Rk 19 25 K 306 1 38 3k 1K
TR LR EPS PR . PSZH 25 R EPS (1% B Ak AR A 06 1 5 oKk 25 Bk EPS 1Y T R AH LU A Iir REAIG, 2R B 25 % EPS J5 Hil
55 T PS-NPs %t B Ak A= K A2 SE7E T . CO Al CP 21 25 B% EPS Ji 14 B bR A= 4 06 1 22 31 18 35 i I AR T . X 0
B T EPS 0] DL (LW B 07 5 5 4 08 5 1 & AR S5 B AR T 4 B x40 B 1 1 4 )

25 S 4 M AN 3R A ) FTIR 43 B 25 R an 18] 5 (a) BT s, 45 S50 41 ¥ 23 X5 EPS B 6 A ™ A — 8 2 B 9 52 i) o
5 CK AR L, 4% S5 50 2H T Bk EPS JLAL FR AR 04 (9 5 B & A 7784k o 3 343 em™ iF i 19 98 & 18 )48 T N—H .
O—H A 4 4ig 2, N—H .O—H A F| T4 11 57 55 43 1 [a] S0 A9 TR i, 0B 25 5 384 & R T Tk 22 1) 114
R4 PS FI CP 211 W 1 5 3¢ W PS-NPs A3 FI| T I Mk 19 R 4E o 900~600 em™ 22 8] ()6 335 4 401X, 4 35 05 75 e 1Y
AR B, PS Il CP 41 1% X 358 06 {1 1) 384 Jin 2% W PS-NPs 7] 55 EPS H1 H 1 FH 4k EPS W Fff o 45 LI 4l M b R &
) XPS 43 AT &5 S WK 5(b) s MR EPS EE AW F C N O cHE ., HP CREEPSIMEZE TR, Kl6h&
SEYSZH bR EPS 19 C 1s W 43 BRI 78 C 1s W5 A i 3 M5 5 i, 455 B 43 S| 7F 284.08 eV .285.80 eV
F1287.67 eV MHIE . 454 REAE 285.80 eV BT (1 C 1s W I J 1 25 11 00 1 20 W o B2 Tk e B A 55 1) C— (O, )™,
S5 A HEAE 287.67 eV MEUT (95 5 W I3 )8 TR IR &b B BE (I i 55 1) C=0 Al O—C—0"", CO 1 CP 41 EPS "X

B REH & = A Th R A R T EPS 45 A Cu’', ZE A TR AR I 32 B 1 rad .

0

IE

Nals 01s

C

1s
N 1s C12p
i i CK
i P H = PS
% 5
B G =
I co TN
P (o0}
Pii o4
g O i
M3 8 i ]
3 3 qae
L ™! I I L=y = POy i} I I 1 I 1 1
40003 600 32002800 2400 20001600 1200 800 400 1200 1000 800 600 400 200 0
PR /em™ ZiahbleV
(a) FTIR)G:HE (b) XPSHi%

B5 &ZWAREEPSH FTIRE I XPS g2 i
Fig.5 FTIR spectrum and XPS energy spectrum of Cls peak of EPS in each experimental group
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Fig. 6 The high-resolution scanning spectrum of C 1s peak of EPS in each experimental group

2.4 BESMNREE W TE E BRI AL BB B 4E B
2.4.1 KEGGi&¥% g &5 #

HHE CKAMLIL, Wbk = B8 5 22 7 Rk R B i 7(a) (¢) (e) i . PSZH A 84 ELH i,
139 T . COHA 819 HEH i, 288 M HEP F . CPZHA 1 588 MK 4,403 N EE P R . X
F W] Cu™ Je Cu™ 5 PS-NPs & 45 JFih30 23 5% A 7™ Az T 58 B0 0 52 0, T R 3 o 81 8 366 DX 3 38 SR 1Kt -

e R A 25 25 S0 38 B UE AT 0 M (P<0.05) , KEGG il 1% & 4543 Hr a1 7(b) (d) (f) fir 7, & 4 & P K
PR3 W 2 P 8, PS ZH PR AR bR A R 0 3 1 IR OB R  TCA TR DL S ABC #5381 . OB 1A 2 A= ) 8l
PRI I i, 32 T 00 S B R R AR 1 T R DA D I A A A T e AR L O R 8 R Y A
I R I IR R R AR %) % S B A R T B R AE PS-NPs A T B AE AR . TCA DB 2 54 W 09 i A ARl i 42
Z 1 LR R B DA AR AR A 7 AR TR 2 (09 W) I M BE B OR 2% PS-NPs (Pl . ABC #5328 &) 12 fE4E
T A% A ) 240 R RS L %) 5 JEE e ds AR, 12 i bV SR W] ATP 3K S i 417 Z2 Rl 9 10 e S5 1 0855 BEE 2 B0 0 i 3 0
UL A, b 25 T R B 3E B IR A A A I ik R AR A R AL L X I BRI 5 2 S AT R BE R AC I o PR T
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Fig.7 Volcano map of inter-group genes in each experimental group and DEGs enrichment map in KEGG pathway
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