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Coalescence or bounce criterion for droplet collision on a

superhydrophobic surface

LI Ke, WANG Jishuo, YUAN Weifeng

(Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University

of Science and Technology, Mianyang, Sichuan 621010, P. R. China)

Abstract: This study investigates the influence of droplet velocity on the collision behavior of equal-sized binary

water droplets impacting head-on on a superhydrophobic surface. Using a high-speed camera, the dynamic

process of droplet collision process was recorded, and a theoretical model was developed to describe the critical

conditions governing post-collision coalescence or bouncing. The model accurately predicts the critical velocity

that determines whether droplets coalesce or rebound after collision. Experimental results show that as droplet

velocity increases, the probability of coalescence also increases, while larger droplet diameters correspond to

lower critical velocities for the coalescence-bouncing transition. During the deformation stage of collision, internal

pressure within the droplets may exceed the surface tension threshold, resulting in coalescence. The proposed

theoretical model demonstrates strong agreement with experimental observations and can effectively predict

droplet behavior at various velocities. This provides a theoretical basis for controlling droplet collision dynamics,
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with potential applications in droplet manipulation, sensing, and microreactor technologies.

Keywords: droplet collision; superhydrophobic; critical condition
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Fig.1 Schematic diagram of droplet force balance
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Fig.2 Schematic diagram of force balance during droplet collision
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Fig.3 Schematic diagram of droplet deformation during collision
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Fig. 4 Flowchart of the fabrication process for the superhydrophobic surface
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Fig.5 Experimental setup for droplet collision
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Fig. 6 Collision process of a droplet with a diameter of 2.45 mm at a relative velocity of 0.25 m/s
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Fig. 12 Collision process of a droplet with a diameter of 2.85 mm at a relative velocity of 0.32 m/s
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Fig. 13  Statistical diagram of the states after collision of droplets with different sizes at a constant velocity
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Fig. 14 Experimental data analysis of merging or bouncing of droplets with three different sizes after collision
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