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Mechanical properties and microstructural response of the
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Abstract: The microporous layer (MPL) of proton exchange membrane fuel cells (PEMFCs) plays an important
role in the transport of water, gas, heat and charge. Mechanical deformation and microstructural damage can
significantly impair these transport processes. In this study, the stress-strain relationship of the MPL was

experimentally determined after material fabrication and microstructural characterization. A numerical
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reconstruction of the MPL was then developed based on the extracted microstructural parameters, and finite
element simulations were conducted to evaluate the displacement-stress distributions of carbon particles and
polytetrafluoroethylene (PTFE) under different mechanical strains. Results show that mechanical loading induces
substantial strain within the MPL, with the highest stress occurring at the surface, where stress concentration is
most likely to form. Stress was found to increase exponentially with applied strain. At 10% strain, the maximum
stress on carbon particles and PTFE was about 31.385 MPa and 14.873 MPa, respectively; when strain increased
to 40%, the corresponding stresses rose to 160.03 MPa and 96.165 MPa, accompanied by a pronounced
intensification of stress concentration regions.
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Fig.1 Flowchart of MPL fabrication
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Fig.2 SEM image of MPL sample
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Fig.3 Mercury injection apparatus and porosity of five different MPL samples
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Fig. 5 Finite element analysis model and grid distribution
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50 pmX 50 pmX 50 pm. b P R AR A R 46 A 8L MPL R S8R} H b v AZ B  BIL AR 1, AR 1 4 R S
100 pm X 100 pm, JFEJE K 10 pm . FER A9 BT A7 b1 R HURUE ¥ 2 B0 S 3 1R .

®1 HRYESH

Table 1 Physical property parameters of materials

ok W/ (kg-m™) P [C A it /M Pa HEE/N
JEH 7 850 200 000 0.30
&k A 2059 100 0.30
PTFE 2190 110 0.26
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R Fig. 6 Schematic diagram of MPL mechanical compression
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Fig.7 Comparison of simulation and experimental results for stress-strain
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Fig.8 Carbon particles and PTFE displacement distribution
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Fig. 9 Displacement frequency of carbon particles and PTFE under four different strains
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Fig. 10 Stress frequency at four different strains of carbon particles and PTFE
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Fig. 11 Stress frequency of carbon particles and PTFE under four different strains
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Fig. 12 The relationship between stress and strain of carbon particles and PTFE
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