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Simulation study of lattice flow fields in PEMFCs
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Abstract: The flow field structure of proton exchange membrane fuel cells (PEMFCs) plays a critical role in
regulating reactant transport, heat dissipation, and electrochemical reactions. To address challenges commonly
observed in conventional flow channels, such as non-uniform reactant distribution, insufficient liquid water
management and limited output performance, three types of lattice flow fields were newly designed. Three-
dimensional PEMFC models featuring both traditional parallel and lattice-type flow fields was established, and
their output performance, oxygen transport resistance, oxygen molar concentration uniformity, oxygen
distribution, and liquid water saturation were comparatively analyzed. Results show that, compared with the
traditional parallel flow field, all three lattice designs exhibited improved performance, achieving a maximum
increase of 24.74% in peak power density. The lattice flow fields also demonstrated significantly lower oxygen

transport resistance, higher oxygen concentration uniformity, and enhanced internal oxygen distribution and liquid
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water management. These findings provides a promising direction for innovative PEMFC flow filed design.
Keywords: proton exchange membrane fuel cell (PEMFC); flow field design; numerical simulation; lattice flow

field
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Fig. 1 Structure of different flow fields
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Table 1 General size parameters of PEMFC model
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Fig.2 Schematic diagram of grid structure
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Table 2 Calculation results of grid independence test

¥ X A% B LI /(A - em ™)
1 138 725 1.314 064
2 178 148 1.292 425
3 278 658 1.281 202
4 485313 1.272 233

5 1 004 939 1.264 601
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Table 3 Numerical model boundary condition parameters
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Fig. 4 Polarization curves and power density curves of PEMFC with different flow field structures
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Fig.5 R, and y values of PEMFC with different flow field structures
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Fig. 6 Distribution of oxygen mass fraction at the GDL-CL junction on the cathode side under different
flow fields at 0.5 V voltage
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Fig. 7 Distribution of liquid water saturation at the GDL-CL junction on the cathode side under
different flow fields at 0.5 V voltage
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