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Time-dependent reliability analysis of service towers under wind load
based on a standard formula
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Abstract: Conventional reliability assessments of transmission towers using standard calculation formulas usually
neglect corrosion-induced performance degradation, and the recommended range of wind load effect ratios is
typically subjective. To address these limitations, this study focuses on service towers and proposes a time-
dependent reliability analysis method under wind load within the framework of the standard formula. First, a

resistance degradation model considering corrosion effects is developed by integrating environmental conditions
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and material type into the corrosion rate. Second, the wind load effect ratio is used as a random variable and its
statistical characteristics are obtained by distribution fitting using real tower monitoring data. Third, the equivalent
normalization (JC) method is used to calculate the reliability index of the service tower based on the standard
formula. Finally, the sensitivity of the reliability index to key parameters in the standard formula is quantitatively
evaluated. Results show that the wind load effect ratio approximately obeys a generalized extreme value
distribution and exhibits strong correlation with tower reliability. Moreover, member initial thickness, atmospheric
corrosivity and wind load adjustment coefficients all significantly influence reliability evolution. Specifically,
higher atmospheric corrosivity accelerates reliability degradation, while the influence of corrosion decreases as
member initial thickness increases. Additionally, a higher wind load adjustment coefficient corresponds to a higher
reliability index.

Keywords: transmission tower; time-dependent reliability; resistance degradation model; design specification;

wind load effect ratio
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Table 2 Statistical parameters of component resistance
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Fig.1 The probability density function of wind load effect ratio
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Fig.2 The cumulative distribution function of wind load effect ratio
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Table 3 The reliability index of different load effect ratio under time-dependant condition (Q235)
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3 2.299(2.309) 2.352(2.353) 2.388(2.377)
1 2.224(2.237) 2.272(2.277) 2.305(2.298)
1 2.163(2.179) 2.208(2.216) 2.237(2.235)
, 2.109(2.129) 2.151(2.163) 2.178(2.179)
1 2.058(2.080) 2.097(2.112) 2.121(2.125)
f, 2.005(2.030) 2.041(2.059) 2.062(2.070)
1 1.951(1.979) 1.983(2.005) 2.001(2.014)
1 1.895(1.926) 1.924(1.949) 1.939(1.955)
t 1.837(1.872) 1.863(1.892) 1.874(1.895)
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Table 4 The reliability index of different load effect ratio under time-dependent condition (Q355)

i K0 B
i Bt

0.1~100 4~10 ARG A
f, 2.461(2.462) 2.521(2.513) 2.565(2.545)
f 2.320(2.328) 2.374(2.373) 2.410(2.399)
1 2.255(2.266) 2.305(2.308) 2.337(2.331)
I 2.202(2.216) 2.249(2.255) 2.279(2.276)
t 2.156(2.173) 2.201(2.210) 2.228(2.228)
1 2.112(2.131) 2.154(2.166) 2.179(2.182)
1, 2.067(2.089) 2.106(2.121) 2.129(2.135)
t, 2.021(2.045) 2.057(2.075) 2.077(2.087)
1 1.973(2.000) 2.007(2.027) 2.024(2.038)
t, 1.925(1.955) 1.956(1.979) 1.970(1.987)
th 1.875(1.908) 1.903(1.930) 1.914(1.936)

TE A5 5 N O AT 36 32 TRAG 1 B9 - 39 W] SR 48 b



76 TR K F F IR % 49 %

A AT AU 280N L Y BT X A 11 34 AT SRR AR A — i 1Y 52 R, ELBE B IR AR I ) A 3 4, AN [
WU 7 2 0 22 Sl o S TR B A WA S5 5% R - A LGk o A 2
3.2 KEBMHIENFIG S H
% , 250 r=5 mm,p=1,8.=1, LB (C3) i (C4) JTLH(CS) JT T (CX) 44 [R] $ [X Y KA bt
B M WE X 4, %o AN ) e A B 2R Q235 R Q355 Y I AR mT §E B . ] SR A8 bR AR Ak R B &) 3 R B 4 TR
Xif 7 AT SR AR A2 S AR 6 B .

222 el T o221 e ey
¥\“~1 \\o\ ~~~~~~~~~~~~~~~~~~~~ @ \“\ """"""""""""""""""
o 2.1f g x & 2.1f e
T 2.0f e = 2.0f R
\‘\ ‘\\
Lok e 1.9F -
1.8F e 1.8F =
17F 17F
1 1 1 1 | 1 1 I 1 ]
18y 10 20 30 40 50 16, 10 20 30 40 50
ST 22 LAY B 22
(a) B=1.0, 7,=1.0, =5 mm Q235444 (BRI (b) Bc=1.0, y,=1.0, 7=5 mm Q235144 (B IE)

B3 XKFEMING XA E 545 H0 8200 (Q235)

Fig.3 The influence of atmospheric corrosive environment on the reliability index (Q235)
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Fig.4 The influence of atmospheric corrosive environment on the reliability index (Q355)
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Table 5 The average time-dependent reliability index of components under different atmospheric

corrosive environment (Q235)
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e TRHE(C3) HL(C4) TLHE(CS) JiT(CX)
t 2.565(2.545) 2.565(2.545) 2.565(2.545) 2.565(2.545)
t, 2.495(2.479) 2.450(2.437) 2.388(2.377) 2.347(2.339)
f 2.463(2.449) 2.398(2.387) 2.305(2.298) 2.242(2.241)
t 2.438(2.425) 2.356(2.347) 2.237(2.235) 2.157(2.161)
1 2.417(2.405) 2.319(2.313) 2.178(2.179) 2.081(2.090)
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Table 6 The average time-dependent reliability index of components under different atmospheric

corrosive environment (Q355)
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Fig.5 The influence of member thickness on the reliability index under different typical times (Q235)

24
2.5 2.5
xQ 22 Q.
g 2.0 ‘i«g 2.0
o 2.0 P
I
15 & 1.5
: 1.8
0 20 20 0
(a) Bc=1.0, y,=1.0 Q345414 (BHhHL) (b) Bc=1.0, y;=1.0 Q345 {4 (B JE)

6 [E) 22 EY R T4 4 BE X BT SR i AR B9 R (Q355)
Fig. 6 The influence of member thickness on the reliability index under different typical times (Q355)
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Fig.7 The influence of dynamic wind load factor on the reliability index (Q235)
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Fig. 8 The influence of dynamic wind load factor on the reliability index (Q355)
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