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Research progress on the effects of turbulence on algae
in aquatic environments
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Abstract: Hydrodynamic conditions play an essential role in algal growth and migration, but the mechanisms
underlying algal responses to turbulence remain poorly understood. This paper systematically reviews the effects
of turbulence on algal biomass accumulation and vertical migration, and further examines key factors affecting
algal sensitivity to turbulent environments. First, turbulence regulates biomass by disrupting cellular processes,

such as cell division and energy metabolism (photosynthesis and nutrient absorption). Second, turbulence alters
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vertical migration behavior by mediating algal buoyancy and mechanical stability. Finally, factors affecting algal
turbulence sensitivity are analyzed in terms of cellular physiological structures and cell cycle phases. In view of
current research gaps, future directions are proposed: deepening investigations into molecular regulatory
mechanisms, establishing more comprehensive turbulence research frameworks, and improving coupled models
linking algal physiology with turbulent physical structures to improve simulation accuracy. This review aims to
provide theoretical support for understanding algal behavior under changing hydrodynamic conditions, developing
bloom prevention and control strategies, and evaluating aquatic ecosystem services.
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Fig.1 Schematic diagram of the impact of turbulence on algal biomass and vertical migration
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Table 3 Effects of turbulence on algae morphology and structure
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T BRI N TR LT, T 200 R R R 11 DR/ T 0 R [67]

o MAEYE50% 1 i i (6=0.364 m*/s") B FRFEAR T Dy, (10 min /&, D,,<100 mm;30 min
A [81]
H#Z(D,,) J& ,D,,<40 mm)
iR R A
P 10%(d,,,) 50%  Tifi ¥t 5 32 14 38 K {0 38 40 L 1T ¥ £ o ik L A0 20 /0N WY 9 200 i TR £ (2]
| ZK 1) TR
- (dg,) GERORIE TR 53 058 25 )y ] 9 85 i 34 n
HEd,)

IR 2 Bl (0 T RS R, R AR 2K Bl TR T R XOR I

A HE R 83
e AT A 20 um 34K 2 50 um [83]
T L 1 F7 1G0T VK W YR AR o T R (6=6.17X107,6.17 X
BEEW B FERAAR 10°.1.10X 107 m%/s) ¥ 35 5, E R0 A2 43 9 il S W 9 91.26 um [50]
A 108.2.121.8.,143.6 um
TN T R YR R/, IR (50,100,200 .400 r/min) 4 H 74
4 T ER-SIN - " [68]
KN R Tk
LU 1/,
3 mRMEXRERNITHHR N

i Vit %o 94 2 Y G B8 A Y S AR A K P B R[] ST B 2 A 5 T KPR I RS R AR B Y
fa iz EB?/A%;‘*‘:T,E\%IEEEKLL 2332 B KA 1 B9S2 0, 25 A AR Az S, il T AR BT Rk Bl
it YL TP A AE 04 B U R A 35 28 KT O ) AL o i A o B K R TR A R BOE A ﬁL@E?’éfﬂ(
b R KPS RS, 0 SR 7 R i UL DX, 96 28 B TG B B R R o e A i T Y 22 R i 4 A i 2R g
0% L6 7K TR A BE T 02 M o0 A, B 2 7R B B K S B AR RS L i 9L X 986 28K S O 1) b A AR B
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2 B i 0 A B FEAE (05 0, Q0 R R L 168 R 45 R N K A I T RE A T S SIS T TR 1] U 1] (A RS AT S TR Ry A2
e, FE W T H G AR B AR B OGN o A o) i A% e 2R A ol A, U R o S MR AR R A i T B B T
170 o B AR B R i A 90% 7T LATE /K 44 o 3 ] 1B #8 ™ 3 ) 18 8 AT LA 35 240 A 10 0K N 5 BE AR K T LA
SR O RE A AR, [ A 3 4 A AT DR AR Y R AR KA T ) ) AR A, DLHE AT IR A K R O 3R
Py 5 R AN R TP Y AR A T ] 7 B Y R A A 2 R e B i A RO A B AR FR R
W, Ji L AT LA S R Y S A L P I O R MU R M S e e ) T RS (LR 1) .
3.1 HEES

it VA, 308 3k T T 3 0 X 5 BRI 0 S A LT T, T S e iR S B G A% o Singh SEUIWF SR B T Ui
A DA AR 2 T Ak K R e I 7 B BORE S T 2O IR AR AR AL o [RIRY, Fang A8 5% 6 BT, Ol R 5 ) o5
AN b A ER K OGRS T 1 B (Cyanobacteria) ¥ 40 M PR 23 I8 (44 ) Az A e 398 K 5 8 2%
JE/N T KR BN T B 2E B . TERDESR AT L iy T 40 A8 o ) A AR il S A0 R T i T A Pl s
It 155 B 1 24, V7 )T RS
32 MR E

i it T LA 9 15 9 200 L ) ML AWORS S P, S T 2 0 9 00 LT RS o T U T LS 98 4 I PN T 1 4 (ROSS)
e BN, Sengupta S5 5T 2 B 7 i i BT W0 4A 1) b AL 04 A0 MR R b2 B ) R G AR SRR, XS
] 3B B 14 SR A0 A 53 A 26 B LN ROS & i [ 3 4 . 17 ROS 2 5 4l M JE 25 (1 14 15, ROS T B BT 52 1 1Y
i P 2 T 8 5 2 R A TR IR A T S DR R B, A R ) A A AT Y rh R T ROSS 7R A AR B i 1Y J)
TR AR T A W e 0 T 25 45 ) R D i R S R P 2 A ) R AR K P Carrara S5 06 2 A4S W TR 75 F
A7 J5 A BR 1) b S 7% A0 R A5 S S XSAR L 128 S S T R IS A Al i (ROS R 2 ) HiTJE X AR . PRt , Jii ¥t
T T 240 L PR 9 P A BR R RT LA T S A M A T 240 LT 25 0 2 A 23 5 e L AL AR AR A P (Rl 48 ARDE AR 1A
Xof R P A % R R O X A G A 7 A Y SR A0 TR AR JHARRE T g A D 1) ) A LB AR S
AT DL o A E S 8 A=(2B7") K I &, e B 40 i 7E 32 398 2 J5 e 2 [l JHC e (] - 45 Jy 1) A4 4R AR IS 6] o B 1Y
B MR TR ReE M 22 1l B AT 5 R ) L (B>0) 5l 17 F (B<0) Fa 2 PE™ . Sengupta F"HfF 58 F W, 1] I
TR EMMIE BT =193 s£13.5 s, 111 F B M54 (E AR Z)M B | =-23.1s£10.2 s, B, MHEK
TR S A7 i AL B AT 5 A0 A LA AR E P (B=10.4 s+ 1.5 s) , 4L T 30 min Ji5 H B0 Y 2 4 T REAL AR B M
%, I HAB AR R g 1

4 EEmmERE

FT T O Y A AT 8 O DN 5 B, i S U0 N2 T A R VD 0 5 BRI U0 o 2 A I A i I 5 EE Y
R A HTEA M b ry 55 97 07 (D10 7 )t il Z 38 K o Leupold 5B 5% 38 B, Y ¥ Ui 98 B2 R 126 cm/s IS, HT 57
VIGE 7158 i B IR 28 /NER B (C. reinhardtii) oAz ARG T 7% , SR, 200 It 568 B2 {470 5 D BE ) 55 119 220K
BEAETD . PG, 08T U8 B i i 8, i It AR B s (B BRI ) o F T A [ 988 25 i it AP 1) 22 5
i V7 548 B 119 728 A 2 5 el K A i O S48 ol ) TR o R i D R BT, A A N Y 9 I R A A R i
PR Y . 140, Nieuwe Meer 3] 9 A TR G 5 B0 i It 45 5 57 7K 44 v 00 350 3 ol oy Tl 348 9 5 248 Oy /N Bk
B Yu ST SE AR BE A i i 5 B Y AT, D0 AR B R el /N R R A O e e R . — T T, O
ol ) Y 2 5 ) 5 K AR O I AR AR R GE IR 55 o 9 A, 4 0 i Ok D0 B O e BT AN A 2 i R K A B R AR
e AR I K AL 3 2 G IR A B A pHL(EL , AT R ARG AE 285 R 8 I 55, i DL i A 9 TR 22 3 R T 98 25 TR K
22 R AR — R B A M 2 B VE 00 B R (IR B R ) #F A K e B K B > Sy — O T, BV 09 T
BoRERWMBEREMESWS ARSIt Flan, Amorim ZF" W 5T R M8 T H B 5500, s
PR K B SRS T W R A 2 & JE | Shannon-Weiner #8 50 (W) Fh 2 B AL HE B0 T o BE R BEVE BRI
F] 85 % (resource utilization efficiency , RUE) : fifj £ {1 i 5% U5 &% A R B A W i 1 LU B, S5 A S RS h g ek
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PRI, SR R R W S 2R R A SC T RUE 1Y T w258 AT R B V& A 7 00 LA K R A A AR 1Y
AE 7, BT 52 Wi /AR 25 2R GE A RE 8 A R R4 S 0 30 25 D RE" ™ DRI , Pt 38 288 % i O R e X L 9 IR UK
B 1 Z5 A B R b A AP K A A 25 D RE AT B LGS S WSS R WL BEA M ZE A B SRR E S A K B Box v 2
VAU E R R SR T (L 4)

x4 BEMHREE
Table 4 Turbulence threshold of algae
fLES 4 it R A 12050 it 7 ¥ it I 139 V5 {5 A 280 SCHik
) B 5 B 42 3.0~7.0 um; 41 ifg BE &
Y E 3 ~ : . S K 2R
R S T i HOLF 2 5 A + A 100~200 r/min 150 r/min BAERKEER [38]
B JE 3 B 4% 3.0~7.0 pm s 41 3 BE 4 0.297 m’/s’ P IR R R
R £ T 3 v . 4‘ s AL £=0~0.730 m’/s’ [36]
A AR T HEE BN 0.325 m’/s’ HE I A BRI R AR
B 5 B AL 3.0~7.0 um; 41 i BE &
9 45 T B2 . : H A B
) o ol 0 o FH LR 2 T A 0~400 r/min 300 r/min Chla & & i [109]
o B ¥ 5 4% 3.0~7.0 um ; 41 Jifl BE & , , BOE SRR R KL LA
] 2 Tl 3 P ) 0~200 r/min 120 r/min o o [110]
i AR O TR AT TG P A e
B 5 B 4% 3.0~7.0 pm ; 40 f BE 5
Kl 45 /,—, 2% S . : . S ) Er
] 2 A e R 2 T AT 0~900 r/min 300 r/min R K R [57]
B 5 B 4% 3.0~7.0 pm ; 20 g BE &5
R 2 o 3 0~3H 2H WY RR R 38
NP T S e T ’ ’ PR 1]
o B ¥ 5 142 3.0~7.0 pm ; 40 Jifl BE & , , FL R R - N o s N ] )
R S Tl ‘ ) 0~400 r/min 100 r/min [40]
AR YER TR AN FHE AR BEERKA
B9 5 FLAE 3.0~7.0 um; 40 Jifg B¥ & P10 R 0 M I A T
—— BIY 5 H 1 ‘ wm ; 41 i BE 5 4ty - b2 ’Jﬁmﬁi(ﬁ P i A3, TG Tl 7 i
i A AER O TR PRI
B ; AR 3.0~7.0 pm; UM EE S £=0~8.93X
] 2 T % e 325X 107 m¥/s® W B AR 39
N T L 10° ms’ mis R 139
B 5 B 4% 3.0~7.0 pm ; 41 g BE &5
EZ/,‘;FL_""A - : : S H- K B
] £ ol B L4 2 T s T 0~200 r/min 150 r/min WKk [77]
£=0~8.01 X 5.06X 107 m*/s’  BEIRIOCE PR R
KAt B AR  TCHEE s 22R A0 i Y [10]
107 m'/s 226X 107 m?/s’ P BER 5 iYW BGH R e =
JSF 5~0 um; = )Z 4t RE | 3= 2%
BHAEMEE SN HE; LM E 4R 60~200 r/min 90 r/min MY H AR KR I R [112]
LT AR TR AR
Wb 0~5.89 m/s 1.26 m/s B R [54]
[+ ;&K 4.0~12.1 pm, 5% 3.6~
KA 2238 5.6 pm; 4 H0RE 4 32 8 g kTR 100~400 r/min 300 r/min P R R [34]
Wi O s 22 R A hf
R F 5~10 pm; H A5 17~21 nm J&
INER R P R A0 it B 32 B R 43 o £ 4 0~5.89 m/s 1.26 m/s BOLG T M= [54]

EN L SRR
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gxR4
e 21 a4 fiF 58 T 97 Y it It 1 (i 18] 15 255 SCifk
L8 B A BE 250 AL X101
o= -
FH bl W R AL G X Ny RE R /57 L0 e 1X10° mYs’ WA 2R [80]
m’/s
B 22 IR 1A

£=0~3.03 X
K BE — B AE 15~2 400 pum ; H A 40 N

KA Wk s T s 2 Ik 1 - 107 mYs’ (R 1.54X 107 m*/s™ 3 10 Ul fe B3R e 1o [18]
ST EKHER 0.1 d)

=R
(Phaeod EIl I15-27 um 535 pms 4541 0.68~2.45 m/ 1.56 m/ R ) R [113]
aeodactylum .68~2.45 m/s .56 m/s P AR V) B
BE TCHEE s A0 i

tricornutum)

4.1 {HAmEE

2] B BE 114 2 18 53 5 ) 00 i R IS ) it D R T A RE T A R A0 M Y T A B R A A 1 ML A R
BE kv B R U S S 9T U1 R b . B 40, Michels 28" 55 2 B, 88 Pa iy v 55 YN Xt HL A 40 B BE 1) e
(T suecica) W AEAFHE 1A AN FIGE M . Barbosa 55" WF 57 2 B, 40 i BE G [ 1) 31 1 A< 356 2 A8 1A L M A 70 38 1y
A CELAT 40 L BE ) HE B0 BT U1 A 68 77 55 o 7] B, &4t 60 BE 7 2 1 i 43 7T DA S i) 3 25 i O SRR T o T 9 4 L
(Cyanobacteria) 0% 40 i BE f Ik A 4H RW , 28 3 40 I ( Chlorophyta) MM BE R R Z & H 4R, UL E R nT LR
IS 2 B BE R A P T 200 L RE (% D T L Ay R R i i B DD OR A R 4 BE 1Y )23 A5 1 T 42
A AP BT VI GE J1 , Leupold S50 5% & W1, 76 40 [A] A4 5 DI 5 B T, H AT 22 )23 4 JfLRE 1) 4 A6 Al o8 bk A
J2 20 ML RE ) /N ER B AR R R T
42 MRS

T 240 B 1 it D SRR A 5 A R AR A R R/ OB AR DL BB ) A1 G o B e, AR R ST R 5 e v 2 i U
JEVE R SR R . BT Kolmogoroff #I8 , Jii It FH AN [ S /0N By it It 28 B, R 168 T AR HE AR A, 43 4 il 1 A8 /N 1)
T T 224 24 A RO 4 30 Al it ST i O o 0 5 170 ) 525 ) o S5 A B e SR e LY 0 LR S R T O
BYY) 78 0 B 3 8 %) B e A X /N

LR, 20 MY 285 5% W) 358 255 1) i It B8Ok o Fl T I T 0 A B U0 T 2 G (T S (A 22 ) T B, > v D 2
BF 240 B35 7T B, AR A7 RE D AR R T BRI B SS | 40 22 s R A K Y SIS AT B 23 1 G i U BURRE |
SR W], ANERBE AT LA X 107 Pa iy [ FR 3 1 IF R I3 R &2 B AR RS B A BERE M 1.5 X 10° Pa iy
B 1 PR & T 22 AR MR e 8 (Spirulina platensis) REEM 2 X 10° Pa 1Y 81 i J& 71 Pk &7

PR, B R DA B 2 e T A R A B A i 553 A TR 40, TR ok, G A 2 R IS 1 it U BB
A T HoAth 5 28, BAG U E 1Y H 3 i e 59 DI Be 07 10 3 BRI
43 EKHE

WFSE U] M T AR AL T4 2LIR A 00 B A AL, 28 17 43 224 1% 48 i JHL 240 i B R 44 e R o oy i 551, 3 25 7 A
Ji 53 4 ek A5 v B 2 B A2 B i Ui 1 B2 M 91 i, Miichels SN UM T T HE B I 4% B ( Tetraselmis suecica) K5
#i 4> ¥ (Isochrysis galbana) Wl 45 ¥ (Skeletonema costatum ) F1 7 [ ffi & 3 ( Chaetoceros muelleri) W) T 5%
FEWT, b T EOIR S Y A A A T A T A BRSO B A I B R BT Y VIV o[RBT, Zhang SEUAR R IR
5 7 o WO 2R 1 AE DGR 4 A R B RO A R Y 3 2 X B U0 ) T R R R e AR KR 0.6 AT ISR A EE Y
i YL ABURPE L 5 T SGR M 0.1 d 0.3 d A AL

5 & i

TG, RS T AR 2 A Y R WA O, O A AR i o SR % RE A 2 R AT T R AE LR .
UC, VTR T i U % IS 2 18] T 6 1O B2 MR ML) , I, S 17 3 Vi) IS i O AU AP A TR 3%
1) it L 368 o 72 V) 9 A F) 00 L 3 2R R S T 52 W) B S AR W o 3 R A i O T LR 4 R B R R
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I AT 240 FT 300 S 240 2R A TR N B T SR i A e 95 2N 2 LW, g A 4 i ) S0 e B
(5 D0 % 240 0 24 0L 1 900 ) 40 O B

2) it it L AT A o4 288 1) R i A A R T R e 2 A W e, — D T i U 3 e 5 R D' 5 A P R W 4 2R
AW o i U AT A SO S T AL K BRE HR 4 07 B RO BE A 3 ) S0 A, 51 E D' IR R AT B A A T s A
PRI o H 25 i it il 4 2R R 8 T R IR BRI P i) i R IR 2 22 51 D1 SR (451405, S BOPSIT Y g 1 1% 146 3 < o
IR REAR BE SR B OE B AR T o 55— D7 T, 8 2 30 3k 3 ey 8 31 WA AT R 52 Il 98 28 ) A W o 3 JBE )i 3 T LA
Dok /L 40 M L RO J2= PR R B S A 4R v TRl T 1 O T e 98 200 R O A T g R R i O
RSV 200 JE T 285, Ik VK Tl 075 A T 900 1) 356 40 L 1 25 5 MR Ao 7

3) i L AT 38 Ao T 2 P Ty S WUBRORR: S e TR R W S A0 T 1) T RS G i DR T DA O B 2 BT Ak K
PRI b i 2 5 | A2 IR AR Ak, T D' B A 728 A 2 1 19T 40 9 B T Y B R R O s A R 9 T R V) 9 4 i
PRI, B 252 W AR P e () 3R A% o LR i IAE P LA A 0 TR 2 B o 3 A B LA AR S e T T R W 35 20 1)
L.

4) AN BE A0 MR AR AN A AR B R W i AR BRI R . B AR R AN S R
W) 358 2 0 i JAE F) RO | EG Ay 9 I G P DL T 0 M R B BT DD RE 0 o LUK, A RO IR RTHE R 5
i AU o B, 2N A A I Bt R e 9 2 R i AL R A2 P L Ak T ZRODR A v A R AR I AR A T R A T 3
AR F A 358 40 B G 55
6 B =

O & i Y0 X 986 DS R W 149 B0 7 X e JR A 25K R 2 BT B R T o BUA WF A 28R T 1 X 6 DS A i U
FAF AR IR A PR (7R N AR WS O TR AR AL Dy A R — DA . B, LR 347
TR Hy T ARRBE T
6.1 M5 F R TR N R AT 55 40 RE B i R A 32

FI AT B BIF 7 2 W, B R A0 i o0 28 Dl e B 8 IR WA 2o R A it O B8 T 2 e AR AR i O T LGl e T
T g 2 A PSR T R e A R AR, AT BB 5T 2 SR A T 28 A e R R UL A B AR A e 7, T
S BOME L5 B B I g 0 B E o DRLIE ROR I B ST B A G T AW AR T B TR AR R B AR
Xt i L 114 M 1oL AL 2
6.2 BUHRARRGHWE

A BB FE MR 2 2 2 T N T AR A i i e A B o N T O AR 48 rh ol R T ALRR Cln i 5 k35 )
RO R AR AT R B BT AR T U, A R R A (H BRI R R S bR B T R
(4 FARIREE , 5 UL i U 2% AT — S 22 50 1 2, E AR K A B EE v it I R RE AR O BT 3 R A A
i AL B R AR, LU, AR ER I R i R — D R IR E AR LM R, TR ) s ] b A
A ME . PR, SEBR U B B 2 52 2 AR R I T A2 300 55 0 R B DR RUE i JE 1) 38 8l O AN 2 4% 1 [a] P £
PRI, © A W58 T UAS W™ A= 45 1 [a] P i 3 o L b B DR 12 58 A 3R AR 26 Hh it , ROk 5 X It o
i V. 4 S 25 R 1 AT R A B 3 BT L TE I BRAE b v B AR (R 4 TUART AR BL 3 Sl AR ARL L 3l g 2 AR AR
S ) A READLRE S, WA 2 N i DA R T A ) 5 T 5 A, IR I 5 S i U X 9 S I AE Y R A A
6.3 WMERXLBITARBRFEURANEENEE

ELIESER: S0 RN INAIUESCIER R0/ O G IR il e o <3 S L B SR h 2 8 D e B N e |
SrATASAL o AN, Li A R I PR B0 2 TR S o R R 9 2 A TR AR AN T i A X 8 A W )
A5 {9 R W, Croze 255 i DNS 173 Ay B Ji& 7 1 AT i 2l 38 40 MO 7 A [ 25 8 OZ 05 0 ) 194 BRI %
#1200, Wang 5555 o A ELTT I8 28 48 rP B 2 9 AR RO R A s T BE AR AN TR i SR T AR B . B — SR
B ALL A T L1 2200 T 986 2 40 i ) BlOU 45 4 1 A BRAT Sy CAnilie ik BB g o0 SR AR A5 ) A5 i U A 1 22 T A A 5 o
SeBR b A i AN B S B 8 R B — R S A B AR B AT O o SO B | A e Tl vk RTEDL
ORI 2 N 2K A BUAT BB R B RIS B S B . TR TR e AR LT 5 2 A v T AR AL 1Y
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T R S W 9K K MR e 52 ki U B LSRR o i AT B 22 A B SRR O RO PR O e e AE B
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