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基于机器学习的煤自燃倾向性预测比较分析

邹佩喆，叶于欣，梁晓瑜，韩 超
（中国计量大学  能源环境与安全工程学院，杭州  310018）

摘要：为了得到泛化能力高的煤自燃倾向性预测模型，基于煤的多指标气体和工业分析参数，

采用随机森林、神经网络、支持向量机和 Stacking 堆叠，通过预测煤的自燃温度和自然发火期，评估

煤自燃倾向性。结果表明采用 Stacking 堆叠方法的预测模型泛化能力最佳，该预测模型特征重要

性表明挥发分和乙烯分别在煤自然发火期和煤自燃温度预测中具有最强的关联性。分析模型性能

指标，发现增加数据量可以显著提升随机森林、神经网络、支持向量机和 Stacking 堆叠方法在煤自

燃温度预测模型中的泛化性能。对于煤自然发火期预测模型，单纯增加数据量意义有限，需要探索

更多新特征以提升模型性能。
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A comparative analysis of coal spontaneous combustion tendency 

prediction based on machine learning
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Abstract: To develop a high-performance model for predicting the spontaneous combustion tendency of coal, on 

the basis of multiple gas indicators and industrial analysis parameters, four machine learning approaches (random 

forest, neural network, support vector machine, and Stacking ensemble) were used to predict spontaneous 

combustion temperature and natural ignition period, thereby evaluating coal spontaneous combustion risk. The 

findings indicate that the Stacking ensemble model exhibits superior generalization capability. Furthermore, 

feature importance analysis reveals that volatile matter and ethylene are the most influential predictors for natural 

ignition period and spontaneous combustion temperature, respectively. Model performance evaluation suggests 

that increasing data volume significantly enhances the predictive generalization of all four methods for 

spontaneous combustion temperature. However, expanding data alone yields only marginal improvement in 

predicting the natural ignition period. Enhancing feature representation is therefore necessary to further improve 
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model performance.
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煤自燃是矿井的五大灾害之一，极易引起瓦斯、粉尘等爆炸事故，从而严重影响煤矿开采活动，甚至威胁

工作人员的生命安全 [1⁃2]。煤自燃不仅造成煤炭资源的损失，还会释放有害颗粒、气体等以污染环境 [3⁃4]。煤的

自燃倾向性是评价煤自燃风险的重要指标因此建立健全煤自燃倾向性预测制度，有助于及时采取煤自燃火

灾预防措施，对防止自燃事故的发生具有重要影响。

目前，世界主要采煤国家采用的煤自燃倾向性预测方法大都是在模拟煤炭自然发火的基础上，采用实验

方法评估煤自燃倾向性 [5]。包括温度编程氧化法、等温氧化法和热重分析法等。温度编程氧化法可以模拟煤

在升温过程中的氧化行为 [6]，而等温氧化法适用于评估煤在一定温度下的氧化稳定性 [7]。热重分析法则通过

测量煤炭样品在控制的加热过程中的质量变化来评估其自燃特性 [8]。尽管这些传统方法提供了重要的基础

数据，但通常需要较长的实验时间和复杂的样品准备。

煤自燃过程具有多因素性、长周期性及非线性特点 [9⁃10]，使得依赖实验模拟的传统煤自燃倾向性预测方

法难以准确捕捉其动态演变规律，很难同时考虑到水分、灰分、固碳率等其他因素 [11⁃12]。随着机器学习技术的

发展，可通过多种数学方法分析大量多维度的煤自燃数据，揭示煤自燃的内在规律，为煤自燃倾向性的精准

预测提供了新途径。例如，Lei等 [13]利用低温氧化试验数据建立了预测模型，与传统的线性回归相比，随机森

林和神经网络模型具备更高的泛化性能。Zhao 等 [14]利用 72 组煤自燃样本数据，基于神经网络方法，结合煤

的动力学参数和环境因素，预测了煤的自燃温度和一氧化碳浓度，但模型的样本数量限制了模型的泛化。

Zhang 等 [15]运用神经网络和随机森林，建立了 13 个输入特征的交叉点温度回归预测模型，证明了基于机器学

习预测煤自燃倾向性的可行性。曹富荣等 [16]通过煤自燃指标性气体，采用机器学习方法构建了一个煤自燃

温度预测模型，准确预测了煤自燃温度。张利冬等 [17]基于煤的工业分析手段，搭建了煤自燃倾向性预测模

型，准确预测了煤自然发火期。Lawal等 [18]从相关文献中整合了 68 个数据集，使用神经网络构建了煤自然发

火期的预测模型，通过预测模型探讨了影响煤自然发火期的因素及其相互关系。这些研究展示了机器学习

在煤自燃预测领域的广泛应用，凸显了其在处理大量多维数据中发掘潜在关系的有效性。根据上述学者的

研究发现，基于机器学习预测煤自燃倾向性主要采用 2 种技术路径，即基于多指标性气体的煤自燃温度预测

模型和基于煤的工业分析手段的煤自然发火期预测模型，但目前研究较少对比分析这 2 种基于不同技术路

径的煤自燃倾向性预测模型。

针对预测煤自燃倾向性的机器学习模型存在泛化性能不高的问题，基于煤的多指标气体和工业分析参

数，采用随机森林、神经网络、支持向量机和 Stacking 堆叠 4 种机器学习方法，构建了煤自燃温度预测模型和

煤自然发火期预测模型，评估煤自燃倾向性。通过平均绝对误差、平均绝对百分比误差、均方根误差、判定系

数 4 种指标分析模型的泛化性能，并对预测模型进行特征重要性分析。最后讨论了基于不同技术路径的煤

自燃倾向性预测模型的改进策略。

1　数据来源与分析

1.1　数据来源和对比方案

为评估 2 种技术路径在机器学习模型中的效果，从实验变量的多样性和样本独立性出发，收集了 506 组

煤自燃温度数据和 80 组煤自然发火期数据。选取了煤自燃温度数据中的 80 组与煤自然发火期的全部 80 组

数据，分别随机分配 64 组为训练集，16 组为测试集，构建机器学习模型并进行特征重要性分析。剩余的煤自

燃温度数据则保留用于后续模型的改进。通过分析均方根误差、平均绝对误差、平均绝对百分比误差和判定

系数 4 种指标，评估各模型的性能。

1.2　输出值及特征向量分析

煤自然发火期的影响因素包括内在性质、环境温度、煤的孔隙率、风速等，参考张利冬等 [17]在构建煤自然
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发火期预测模型中已筛选出的煤的含水率、固碳率、灰分、挥发分作为模型的输入特征，煤自然发火期作为输

出特征。

煤自燃气体指标一直是预警煤自燃的主要依据，大量的实验已经证明煤在自燃氧化的过程中会产生多

种气体，目前常用的煤自燃指标气体有 C2H4、CO[19⁃20]等。经过筛选，将部分指标性气体作为煤自燃温度预测

模型中的输入特征。

2 种模型的特征变量及输出值如图 1 所示，A ad 为灰分、M ad 为水分、V ad 为挥发分、FCad 为固定碳。

2　机器学习模型选择与参数调节

2.1　机器学习模型选择

随机森林作为一种集成学习算法，能够处理大规模数据集并有效减少过拟合，适合于处理具有复杂数据

结构的预测任务 [21]。神经网络具有深层结构和非线性学习能力，特别适合捕捉和建模复杂的模式和关联

性 [22]。支持向量机在处理高维数据和非线性问题方面表现出色，适用于小样本数据集[23]。Stacking 堆叠模型

通过组合多种基模型的预测结果来提高预测的准确性和泛化能力[24]，这使得该方法能够综合多种机器学习方

法的优点。综上所述，选取随机森林、神经网络、支持向量机和 Stacking堆叠 4种机器学习方法搭建预测模型。

2.2　随机森林模型

随机森林模型通过整合多棵决策树来提升预测的准确和稳健性。在训练过程中，随机森林引入

Bootstrap 抽样随机化机制，生成多样化的决策树。最终，随机森林通过对所有树的预测结果进行平均（回归

任务）来得出整体预测结果。在预测煤自燃倾向性方面，随机森林模型对数据的预处理要求不高，不需要进

行复杂的数据变换或规范化，相比其他算法节省了数据准备阶段的时间。为了提高随机森林模型的泛化性

能，将模型参数树的数量设置为 500、树的最大深度为 10、最小叶节点样本数为 3、最大叶节点数为 50，这些参

数的配置使得随机森林模型在执行煤的自燃倾向性预测任务时，能够达到高效和高准确率的表现。最终参

数设置和模型分别如表 1 和图 2 所示。

图 1　煤自燃倾向性预测模型特征变量及输出值

Fig. 1　　Characteristic variables and output values of coal spontaneous combustion tendency prediction model

表 1　随机森林模型关键参数

Table 1　　Key parameters of the random forest model

参数名称

n_estimators

max_depth

min_samples_leaf

max_leaf_nodes

n_jobs

verbose

具体数值

500

10

3

50

-1

2
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2.3　神经网络模型

神经网络模型是一种受人脑结构启发的算法框架，由多层相互连接的节点（或称为神经元）组成，能够通

过学习大量数据来识别复杂的模式和关系。在数据预处理阶段，采用 StandardScaler 对特征进行标准化处

理，以减少尺度差异对模型性能的潜在影响。神经网络模型的架构由 1 个输入层、3 个隐藏层以及 1 个输出层

组成。输入层的神经元数量与特征空间的维度相匹配。每个隐藏层配置了 50 个神经元，并采用了 ReLU

（rectified linear unit）作为激活函数，以提高模型对复杂关系的拟合能力。在损失函数选择方面，使用了均方

误差损失（mean squared error loss，MSELoss），模型优化采用 Adam 算法，并设置了 0.01 的学习率。最后，模型

经过 100 个训练周期（epochs）的训练，以确保充分学习数据中的模式。详细结构和参数设置分别如图 3 和表

2 所示。

图 2　基于随机森林算法的煤自燃倾向性预测模型

Fig. 2　　Coal spontaneous combustion propensity prediction model based on random forest algorithm

图 3　基于神经网络算法的煤自燃倾向性预测模型

Fig. 3　　Coal spontaneous combustion propensity prediction model based on neural network algorithm
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2.4　支持向量机模型

支持向量机（support vector machine，SVR）是一种监督学习算法，它通过找到最优超平面来拟合数据中

的最大边界，从而进行回归分析并预测连续变量的值。在设置模型参数时，对数据使用 StandardScaler 进行

标准化，以消除不同特征量纲对模型的影响。选择了径向基函数（radial basis function，RBF）作为 SVR 模型

的核函数（Kernel），它能有效处理非线性数据关系。模型的正则化参数（C）设为 100，表明模型更倾向于减少

训练误差。核函数系数（gamma）设置为 0.1，控制了核函数的宽度，影响了训练样本对于决策边界的影响范

围。此外，将 epsilon 参数设置为 0.1，定义了模型对预测误差的容忍程度，从而在预测精度和模型泛化能力之

间取得平衡。其模型原理图和参数分别如图 4 和表 3 所示。

2.5　Stacking堆叠模型

Stacking 是一种高级的机器学习集成技术，它结合了多个不同的基础预测模型来提高整体的预测性能。

这种方法的核心思想是使用一层或多层的基模型的输出作为新的特征，这些新特征再输入到一个最终的模

型中，进行最后的预测。堆叠模型的关键组成部分包括基模型和元模型，基模型各自独立地对同一数据集进

表 2　神经网络模型关键参数

Table 2　　Key parameters of the neural network model

参数名称

layer

Units from the input layer to the first hidden layer

Units from the first hidden layer to the second hidden layer

Activation Function

Optimizer

DataLoader

Epochs

具体数值

1

50

50

ReLU

Adam(lr=0.01)

32

100

图 4　基于支持向量机回归算法的煤自燃倾向性预测模型

Fig. 4　　Coal spontaneous combustion propensity prediction model based on support vector machine regression algorithm

表 3　支持向量机模型关键参数

Table 3　　Key parameters of the support vector machine

参数名称

Kernel

Regularization parameter （C）

gamma

epsilon

具体数值

rbf

100

0.1

0.1
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行训练，并产生预测结果。元模型使用基模型的输出作为输入特征来进行训练。将随机森林和神经网络作

为基模型，经 Pipeline 功能优化后的线性回归作为元模型（Pipeline 是一个用于生成多项式特征的预处理功

能，它将输入特征向量转换为包含所有多项式组合的新特征矩阵），搭建了基于 Stacking 堆叠方法的煤自燃

倾向性预测模型。其模型和参数设置分别如图 5 和表 4 所示。

3　模型评估及分析

3.1　模型性能指标

为了评估煤自燃温度和煤自然发火期 2 种预测模型的性能，使用以下指标评估。

1）平均绝对误差（mean absolute error，MAE）

MAE =
1
n∑i - 1

n

|| fi − yi ， （1）

式中：fi 为预测值；yi 为真实值；n 为样本数量。平均绝对误差（MAE）是真实值与预测值之差的平均数，可以

更加直观地判断模型的精确程度，一般 MAE 的值越小，模型精度越高。

图 5　基于 Stacking堆叠方法的煤自燃倾向性预测模型

Fig. 5　　Coal spontaneous combustion propensity prediction model based on Stacking approach

表 4　Stacking堆叠模型关键参数

Table 4　　Key parameters of the Stacking model

参数名称

Basic Estimator

Final Estimator

RF

ANN

具体数值

RF，ANN

LRM （PolynomialFeatures）

n_estimators: 100, 300, 800

max_depth: None, 10, 20

min_samples_split: 2, 5, 10

min_samples_leaf: 1, 2, 4

Units from the input layer to the first hidden layer: 50

Layer: 1

Units from the first hidden layer to the second hidden layer: 50

Activation function: ReLU

Optimizer: Adam （lr=0.01）

Epochs: 100
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2）平均绝对百分比误差（mean absolute percentage error，MAPE）

MAPE =
1
n∑i - 1

n |

|
|
||
||

|
|
||
| fi − yi

yi

× 100%， （2）

式中：fi 为预测值；yi 为真实值；n 为样本数量。平均绝对百分比误差更能反映数据的相对误差，相比于平均绝

对误差，更适用于比较不同数据集或不同量级的数据。

3）均方根误差（relative root mean square error，RMSE）

RMSE =
∑
i = 1

n

( )fi − yi

2

n
， （3）

式中：fi 为预测值；yi 为真实值；n 为样本数量。均方根误差能够对预测值和真实值之间的误差进行综合考虑，

并且对较大误差给予更高的权重。

4）判定系数（R2）

R2 =

1 −∑
i = 1

n

( )fi − yi

2

∑
i = 1

n

( )yi − ȳ
2

， （4）

式中：fi 为预测值；yi 为真实值；n 为样本数量，ȳ 为真实值的平均值。判定系数能够衡量预测模型对观测数据

的拟合程度，值越接近 1 表示预测模型拟合得越好，具有直观性和易解释性。

3.2　模型性能评价

图 6 为煤自燃温度预测模型性能指标，图 7 为煤自燃温度预测曲线。从图中可以看出，采用 4 种不同机

器学习方法所构建的模型显示出了较高的均方根误差（RMSE），分别为 27.32、29.22、40.95 和 24.71，均方根误

差高表明模型的预测值与实际值之间的平均差异较大。不同机器学习方法的判定系数分别达到 0.84，0.81，

0.63，0.86，表明模型较好地捕获了数据的总体趋势。高均方根误差和高判定系数在模型上同时出现，可能意

味着当前模型对训练数据过于敏感，存在高方差问题，导致在新数据上的泛化能力不足，尤其是考虑到整个

数据集仅有 80 组观测数据，这一小样本量可能加剧了模型的过度拟合现象。图 8 为煤自然发火周期预测模

型性能指标，图 9 为煤自然发火周期预测曲线。从图中可以看出，采用的 4 种不同机器学习方法所构建的模

型显示出了较低的判定系数（R2），分别为 0.49、0.17、0.39 和 0.56，较低的判定系数（R2）使模型表现出欠拟合的

特性，说明特征向量的数量可能不足。

图 6　煤自燃温度预测模型性能

Fig. 6　　Coal auto-ignition temperature prediction model performance
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从模型方法的选择来看，在煤自然发火周期预测模型中，Stacking 堆叠机器学习方法表现出色，其平均绝

对百分比误差（MAPE）、平均绝对误差（MAE）以及均方根误差（RMSE）均较低，以及较好的判定系数（R2）。

而在煤温度预测模型中，Stacking 堆叠机器学习方法再次表现出色，其平均绝对百分比误差（MAPE）、平均绝

图 7　煤自燃温度预测曲线

Fig. 7　　Predicted coal spontaneous combustion temperature curve

图 8　煤自然发火期预测模型性能

Fig. 8　　Coal natural ignition period prediction model performance
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对误差（MAE）以及均方根误差（RMSE）也较低，判定系数（R2）接近于 1，表明该方法对煤自燃温度的预测较

为准确。综上所述，Stacking 堆叠机器学习方法在煤自然发火期和煤温度预测方面均表现出较高的预测精度

和较好的模型拟合效果。随机森林次之，表现最差的是神经网络和支持向量机。这可能是因为神经网络和

支持向量机在数据量较少的情况下表现较差。

3.3　特征重要性分析

对预测模型的输入特征进行了重要性分析，以探索不同因素对煤自燃倾向性预测模型的影响，分析结果

如图 10 和图 11 所示。基于多指标性气体的煤自燃温度预测模型中，乙烯（C2H4）和一氧化碳（CO）被证明是

最关键的指标性气体。这一发现突出了 C2H4和 CO 在预测煤的自燃温度中的作用，因为它们与煤的氧化过

程密切相关。基于煤工业分析的煤自然发火期预测模型中，挥发分的重要性远超其他工业分析指标，挥发分

的高含量通常表明煤种更容易氧化和自热，因此在预测模型中占据了重要位置。此外，含水率也显示出相对

较高的重要性，可能是因为水分的存在可以影响煤的热导性和氧化速率，从而间接影响自燃倾向。

图 10　煤自燃温度特征重要性

Fig. 10　　Importance of coal auto-ignition temperature characteristics

图 11　煤自然发火期特征重要性

Fig. 11　　Importance of coal natural ignition period characteristics

图 9　煤自然发火期预测曲线

Fig. 9　　Coal natural ignition period prediction curve
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3.4　模型改进

前文全面评估了煤自燃过程中的温度与发火期预测模型。对于煤自燃温度预测模型，为了提升模型的

预测精度和稳定性，建议增加数据量以更好地训练模型，减少高方差的影响，并提升模型在未知数据上的表

现。所以计划通过扩充数据集来增强模型的训练效果，以缓解模型过度拟合的现象。对于煤自然发火期预

测模型，该模型的欠拟合可能是因为模型复杂度不足以捕捉数据中的所有潜在关系。在这种情况下，仅仅增

加数据量是不够的，因模型本身可能无法捕捉更复杂的数据结构。因此，这里将重点探讨如何通过扩展数据

集来提高煤温度预测模型的精度与可靠性。

将之前收集到的 506 组烟煤温度数据，重新训练了包括随机森林、支持向量机回归、Stacking 堆叠和神经

网络在内的 4 种机器学习模型。模型的性能图如图 12 所示，以及预测曲线如图 13 所示。可以看出，各模型

在数据量增加后表现出显著的性能提升，均方根误差（RMSE）、平均绝对误差（MAE）、平均绝对百分比误差

（MAPE）等评价指标均有明显下降，而判定系数（R2）分别从原来的 0.84、0.81、0.63、0.86 提升至 0.94、0.90、

0.91、0.95，特别是 Stacking 堆叠依旧是泛化性能最高的机器学习方法。

图 12　煤自燃温度模型性能

Fig. 12　　Coal spontaneous combustion temperature model performance

图 13　改进后的煤自燃温度预测曲线

Fig. 13　　Enhanced temperature prediction curve for coal spontaneous combustion
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4　讨  论

比较了 2 种不同技术路径的煤自燃倾向性预测方法，即基于多指标性气体的煤自燃温度预测模型和基

于煤工业分析的煤自然发火期预测模型。每种技术路径都有其独特的优势和局限性。

基于多指标性气体的煤自燃温度预测模型的优点：1）高度相关性，依靠煤自燃指标气体，预测自燃温度

时相关性较高；2）反应速度快，由于依赖实时测量的气体数据，模型能够快速响应煤矿内部环境的变化。缺

点：1）需要考虑到不同煤种的指标性气体不一致，统一建模会导致测试结果出现差异性；这类模型的通用性

较差，需要对不同煤种单独建模；2）受环境影响，气体指标可能受到外部因素的干扰。

基于煤工业分析的煤自然发火期预测模型的优点：1）依赖于煤的工业分析指标作为特征指标，受煤种差

异的影响性较小，具备一定的通用性；2）煤自然发火周期的时间长短能够更直接地判断煤自燃倾向性。缺

点：1）由于煤工业分析指标与煤自然发火期之间的关联性没有煤自燃温度与指标性气体之间紧密，所以需要

大量的算力以及数据量去训练模型；2）测试煤自然发火期的实验复杂且耗时久，且各个实验室测试煤自然发

火期的方法和条件不同也会造成数据偏差。

此外，研究还发现 Stacking 堆叠模型在处理煤自燃预测问题上具有较大优势。这可能是因为 Stacking 能

将各种机器学习方法的优点集中，如在本文中将随机森林和神经网络 2 种机器学习方法通过 Stacking 方法进

行堆叠，使该方法表现出优于其他 3 种机器学习方法的性能。

5　结  论

通过收集相关数据，构建基于多指标气体的煤自燃温度预测模型和基于工业分析参数的煤自然发火期

预测模型，评估煤自燃倾向性，得出以下结论：

1）Stacking 堆叠模型具有较高的精确度和泛化能力。在对比的 4 类模型中具有最低的误差指标和最高

的决定系数。在预测煤自然发火期中决定系数（R²）为 0.54，在优化后的煤自燃温度模型中决定系数（R²）

为 0.95。

2）煤温度预测模型中的过拟合问题可以通过增加数据量解决，煤自然发火期预测模型的欠拟合问题建

议增加更多新的特征向量。

3）在预测煤自燃温度方面，C2H4和 CO 的特征重要性高于其他气体种类，在预测煤自然发火期方面，挥发

分具有最高的特征重要性。
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