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A comparative analysis of coal spontaneous combustion tendency

prediction based on machine learning
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(College of Energy, Environment and Safety Engineering, China Jiliang University, Hangzhou 310018,
P. R. China)

Abstract: To develop a high-performance model for predicting the spontaneous combustion tendency of coal, on
the basis of multiple gas indicators and industrial analysis parameters, four machine learning approaches (random
forest, neural network, support vector machine, and Stacking ensemble) were used to predict spontaneous
combustion temperature and natural ignition period, thereby evaluating coal spontaneous combustion risk. The
findings indicate that the Stacking ensemble model exhibits superior generalization capability. Furthermore,
feature importance analysis reveals that volatile matter and ethylene are the most influential predictors for natural
ignition period and spontaneous combustion temperature, respectively. Model performance evaluation suggests
that increasing data volume significantly enhances the predictive generalization of all four methods for
spontaneous combustion temperature. However, expanding data alone yields only marginal improvement in

predicting the natural ignition period. Enhancing feature representation is therefore necessary to further improve
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model performance.
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Fig. 1 Characteristic variables and output values of coal spontaneous combustion tendency prediction model
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Table 1 Key parameters of the random forest model

SRR AkduE
n_estimators 500
max_depth 10
min_samples leaf 3
max_leaf nodes 50
n_jobs -1

verbose 2
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Fig.2 Coal spontaneous combustion propensity prediction model based on random forest algorithm
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Fig.3 Coal spontaneous combustion propensity prediction model based on neural network algorithm
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Table 2 Key parameters of the neural network model

R HAREUH
layer 1
Units from the input layer to the first hidden layer 50
Units from the first hidden layer to the second hidden layer 50
Activation Function ReLU

Optimizer Adam(1r=0.01)
Dataloader 32
Epochs 100

24 ZHFEEHNKE

SCHF 1) 4 HL (support vector machine, SVR) J& — il i 5 2 > 503k | B3l i 4% 31 d D0 ¥ 17 ok 4005 K dis o
4 f R S DT EAT (81051 70 M O T 1 A e MR . A i B R 2 B % BOHE i 1 StandardScaler #E 4T
B AL, AT B AS [ 45 iE A 40 0 A5 280 f) 52 0] o B 5 17 448 1) & oK %X (radial basis function, RBF) {2 SVR 5 %!
F 4% PR B (Kernel) , B REAT R0AL BRAR LR RO OC 28 o AEARLAY IE WAL ZB0(C) B 100, 2 WA 20 5465 o) T ok 2D
IR 25 . BRECR B (gamma) BB 0.1, P 1A% pR BB 9 B2, 5200 1 IR R AR ) T DR SR 300 5 1) 32 Wi Vg
Fil o LA, K epsilon Z &y 0.1, 5 SC T AR BN 5% 22 1) 25 0 R B2, DT A S50I0RG 2 A 32 AL RE 1 =2
() ISPl o HCASE IR it L ] R 2 03 3 A P 4 R 3 TS o

WE LR

rt A FE

o . WETHR

%S o

‘— y=(wgx)+b—¢

o y AHE BRI
xRN B AT P R R
w I B, Y T Y1 A i
b AN, P T Y 5 IR R Z IH]

B
HBE R T 2

B4 ETFXHmEVEEEEEE B SR 6 MR

Fig. 4 Coal spontaneous combustion propensity prediction model based on support vector machine regression algorithm
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Table 3 Key parameters of the support vector machine

e HAREUH
Kernel rbf
Regularization parameter (C) 100
gamma 0.1
epsilon 0.1
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Fig. 5 Coal spontaneous combustion propensity prediction model based on Stacking approach
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Table 4 Key parameters of the Stacking model

€L B
Basic Estimator RF,ANN
Final Estimator LRM (PolynomialFeatures)

n_estimators: 100, 300, 800
max_depth: None, 10, 20

RF
min_samples_split: 2, 5, 10
min_samples_leaf: 1,2, 4
Units from the input layer to the first hidden layer: 50
Layer: 1
ANN Units from the first hidden layer to the second hidden layer: 50

Activation function: ReLU
Optimizer: Adam (1r=0.01)
Epochs: 100
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Fig. 6 Coal auto-ignition temperature prediction model performance
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Fig. 8 Coal natural ignition period prediction model performance
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Fig. 10 Importance of coal auto-ignition temperature characteristics
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Fig. 11 Importance of coal natural ignition period characteristics
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Fig. 12 Coal spontaneous combustion temperature model performance
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Fig. 13 Enhanced temperature prediction curve for coal spontaneous combustion
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