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考虑测量误差的非马尔可夫 Wiener 过程内腐蚀预测
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摘要：油气集输管道腐蚀演化行为复杂，实际运行中难以获得充分的数据，且传统经验模型在

长期预测中误差较大。为更全面地表征管道腐蚀过程的记忆效应和测量随机误差动态特性，精确

预测管道内壁腐蚀深度，提出了一种综合考虑测量误差和记忆效应双重影响下的非马尔可夫维纳

过程（Wiener process）预测模型。通过极大似然估计和贝叶斯推理对模型的未知参数进行估计和更

新；基于弱收敛理论和首达失效时间的定义，推导出管道腐蚀深度分布的近似解析式，实现管道腐

蚀深度的预测。最后，以重庆气矿某天然气管道内壁的腐蚀监测数据为例验证了该方法的有效性。
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Abstract: The corrosion evolution of oil and gas transmission pipelines is highly complicated, and sufficient data 

on influencing factors are often difficult to obtain in actual operation. Additionally, traditional empirical models 

produce significant errors in long-term predictions. To more comprehensively characterize the dynamic 

characteristics associated with memory effects and measurement randomness in pipeline corrosion, this paper 

proposes a non-Markov Wiener process prediction model considering both measurement errors and historical 

dependency. Model parameters are estimated and updated using maximum likelihood estimation and Bayesian 

inference. Based on weak convergence theory and the definition of first-passage failure time, an approximate 

analytical solution for the distribution of corrosion depth is derived, enabling predictive assessment of internal 

corrosion progression. Finally, monitoring data from the inner wall of a natural gas pipeline in the Chongqing Gas 

Mine are used to verify the effectiveness of the proposed method.
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金属管道是天然气、石油的重要储运载体，其安全高效运行，对保障能源稳定供应和提升社会经济效益

意义重大。但在长期服役过程中，金属管道易发生钢铁吸氧腐蚀、析氢腐蚀、二氧化碳酸性腐蚀、细菌腐蚀

等 [1]，导致管道出现腐蚀、穿孔甚至泄漏，不仅影响运输产品的质量，更可能引发安全事故和环境污染 [2⁃3]。因

此，研究管道腐蚀机理，建立管道内壁腐蚀深度预测模型，对于管道的腐蚀防护有积极而重要的意义。

管道腐蚀预测模型可预估管道在特定环境和运行条件下的腐蚀行为，帮助管理和维护管道系统，延长使

用寿命并防止事故发生。将随机过程应用于腐蚀过程建模能有效描述腐蚀速率的随机波动和腐蚀退化过程

的非线性行为，更好地捕捉腐蚀过程中的随机特性，提高预测的准确性与可靠性。郭凌云等 [4]将随机过程（伽

马过程、逆高斯过程和维纳过程）引入到计算腐蚀管道的失效概率中，模拟腐蚀增长过程的随机性。研究表

明，通过这些随机过程的应用能够更好地反映腐蚀速率的波动性与不确定性。张新生等 [5]将逆高斯过程理论

引入油气管道腐蚀评估，提出了基于逆高斯−状态空间模型的腐蚀退化过程模型，进一步优化了维修决策和

管道管理策略。逆高斯过程等随机过程在管道腐蚀退化过程模型中具有较强的应用价值。

在维纳过程的具体应用中，彭红发 [6]通过无迹粒子滤波算法（unscented particle filter， UPF）估计维纳过程

的漂移和扩散参数，预测管道的剩余寿命，并获得剩余寿命的概率分布。这种方法能够有效应对腐蚀退化过

程中的不确定性，提高剩余寿命预测的准确性。此外，徐昊等 [7]结合维纳过程与数据驱动模型，利用外部环境

因素和管道退化数据来预测管道的寿命。这种方法通过数据驱动的方式充分挖掘了管道腐蚀的潜在规律，

提高了腐蚀预测精度。上述方法中，准确且大量的测量数据是精准建模腐蚀退化过程的前提。吕品品 [8]、毕

傲睿 [9]提出针对腐蚀管道少样本情况的基于维纳过程（Wiener process）的贝叶斯信息融合法，但测量数据质

量对模型的影响仍然十分严重。

针对管道腐蚀过程中明显的记忆效应，笔者将非马尔可夫维纳过程引入腐蚀建模，捕捉腐蚀过程中时间

相关性和非独立性的关键特征；同时，针对运行工况的不确定性，联动分析测量随机误差与腐蚀模型的动态

特性，综合测量误差和记忆效应双重影响 [10⁃14]，建立管道内腐蚀的 Wiener退化模型；采用极大似然估计法对模

型未知参数进行初步估计，利用贝叶斯推理优化漂移系数的超参数，基于可靠性理论对管道内腐蚀深度进行

预测。

1　Wiener退化过程

1.1　带漂移系数的 Wiener过程

Wiener过程假设增量是独立、正态分布的，路径连续，适合于描述随机、连续的变化过程。油管腐蚀深度

的变化 ΔX 通常是随机的，并是多种因素 ζi 影响之和，即 ΔX=∑ζi。假设这些多种因素造成的退化量独立同分

布，且数量与退化时间成正比，则腐蚀深度变化量服从正态分布。这些特性使得 Wiener过程作为一种基础模

型是合理的选择 [15⁃16]。

管道腐蚀的基本 Wiener退化过程可表示为

X ( t) = X (0) + λt + σW ( t)， （1）

式中：X（t）是时刻 t处的油管腐蚀深度；X（0）是初始时刻的油管腐蚀深度；λ是腐蚀的速率，通常为负数，表示

油管腐蚀深度随时间的增加；σ是 Wiener过程的波动率，用来表示随机波动的强度；W（t）是标准 Wiener过程，

在时间 t的值。通常 X（0）为 0，根据具体的油管腐蚀数据来估计和校准模型参数 λ和 σ，以便更精确地预测未

来的腐蚀深度变化 [17]。

1.2　失效时间与剩余寿命

为了描述油气管道剩余使用寿命（remaining useful life，RUL）与壁厚腐蚀退化量的关系，利用首次到达

失效阈值的时间来表达。剩余壁厚的退化量会随时间增加，设定失效阈值为 ω，当退化量超过 ω时，管道视
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为失效 [18]。剩余寿命可以通过确定管道退化量首次达到 ω的时间来计算。

T = inf {t：X ( t) > ω | X ( )0 < ω }， （2）

式中：ω为根据相关行业规定预先设置的失效阈值。

当 X（t）中的漂移参数 λ和扩散参数 σ为固定效应时，剩余寿命 T 服从逆高斯分布，其分布函数表示为

FT ( )t =Φ ( λt − ωσ t ) +Φ ( −（ω + λt）

σ t ) exp ( 2ωλ

σ 2 )， （3）

式中：Φ（·）为标准正态分布函数。

概率密度函数表示为

fT ( )t =
ω

2πσ 2 t3
exp ( − ( )ω − λt 2

2σ 2 t )。 （4）

可靠性函数表示为

RT ( t) = 1 − FT ( t) =Φ ( ω − λtσ t ) −Φ ( − ( )ω + λt

σ t ) exp ( 2ωλ

σ 2 )。 （5）

1.3　考虑测量误差的非马尔可夫 Wiener退化过程描述

现有 Wiener过程的退化建模是基于标准布朗运动模型，是一个马尔可夫过程。然而，集输管道的腐蚀退

化过程通常不是严格意义上的马尔可夫过程。马尔可夫过程要求未来状态的概率分布仅依赖于当前状态，

而不依赖于过去的状态历史。然而，在输油管道的腐蚀深度退化中，影响因素可能涉及多个方面，包括管道

材料、输送介质、环境条件（如湿度、温度等）、腐蚀性质（如化学成分、流速等）等多种因素。这些因素可能会

导致腐蚀深度的变化不仅仅由当前状态所决定，而是受到过去状态的影响以及环境变化的复杂交互影响。

因此，管道的腐蚀退化过程更可能是一个非马尔可夫过程，其演化可能具有一定的记忆性质，即过去的腐蚀

深度和环境条件可能会对未来的腐蚀深度演变产生影响。

Wiener 退化过程是一个随机过程。分数布朗运动（fractional Brownian motion，FBM）模型可以视为

Wiener 过程的一种泛化形式，在标准布朗运动基础上引入分数阶导数，其在时间上不再是二阶连续导数，更

能灵活表达时间上的性质。基于非线性 FBM 模型的退化过程可以表示为

X ( t) = X (0) + λ∫
0

t

η (γ；β ) dγ + σH BH ( t)， （6）

式中：X (0)为初始退化状态，通常假设其等于零；λ为漂移系数，用来描述退化速率；σH 为扩散系数，用来描述

退化的波动程度；H 为赫斯特（Hurst）指数；∫
0

t

η (γ；β ) dy 是以 β为参数的非线性函数，用来描述非线性退化趋

势；BH ( t)为标准分数布朗运动，用来描述退化的不确定性。

为了描述管道长程依赖的退化过程，非马尔可夫退化模型引入标准分数布朗运动。FBM 定义为

BH ( t) − BH (0) = Γ (H +
1
2 ) ×∫−∞

t

KH ( )t − s  dB ( s)， （7）

式中：Γ（·）为伽马函数，具体形式为 Γ ( x) =∫
0

∞

t x − 1 e− t dt；KH ( t − s)定义为

KH ( t − s) =

ì
í

î

ïïïï

ïïïï

( )t − s
H − 1

2， 0 ≤ s ≤ t ，

( )t − s
H − 1

2 − ( )− s
H − 1

2， s < 0 。
（8）

FBM 的协方差矩阵可以表示为

E [ BH ( t) BH ( s) ]=
1
2 ( t2H + s2H − | t − s | 2H)， （9）

式 中 ：H 为 赫 斯 特 指 数 ，用 于 描 述 自 相 关 性 。 非 马 尔 可 夫 过 程 的 增 量 是 非 独 立 的 ，满 足 BH（t + τ）−
BH（t）~N (0，σ 2

H τ 2H)。假设式中 BH（t）为标准 FBM，满足 BH（t + τ）− BH（t）~N（0，τ 2H），以简化 σ 2
H 的运算。

Hurst指数 H 能够捕捉时序数据之间的自相关性，特别是长期依赖性，通常有 3 种形式：
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1）当 0.5<H<1 时，未来的退化轨迹会沿着当前的退化趋势发展；

2）当 H=0.5 时，退化轨迹为无记忆效应的随机过程，简化为布朗运动；

3）当 0<H<0.5 时，退化轨迹遵循均值回归。

这里讨论 H≠0.5 的情况。在集输管道实际工作中，因运行工况不确定，管道腐蚀监测数据往往包含不确

定性的随机误差，所以非马尔可夫过程的参数初始估计不够精确，从而影响腐蚀深度预测结果的准确性。为

了提高腐蚀深度预测的准确性和模型的鲁棒性，假设随机测量误差为独立同分布的高斯白噪声，记作 ε（t），

满足 ε（t）~N（0，σ 2
ε）。在不同检测时刻，直接获取的管道腐蚀性能退化量 Y（t）可表示为

Y（t）= X（t）+ ε（t）。 （10）

假设当前检测时刻 tk 的性能退化量为 Y（tk），则考虑测量误差与记忆效应双重影响的非马尔可夫 Wiener

过程退化模型可以描述为

Y ( t) = Y ( tk) + λ∫
tk

t

η (γ；β ) dγ + σH BH（t）。 （11）

2　模型参数估计

在退化建模中，通常假定漂移系数为服从正态分布的随机变量，λ~N（μλ，σ 2
λ），待估计参数可表示为 Θ =

[ μλ，σ 2
λ，σ 2

H，σ 2
ε，β，H ]。基于历史退化数据，采用极大似然估计法，对退化模型的未知参数进行初步估计，再利

用贝叶斯推理优化漂移系数的超参数 μλ、σ 2
λ。其中，μλ、σ 2

λ 是随机参数，反映退化差异性；σ 2
H、σ 2

ε、β、H 是固定参

数，反映退化共同性。

2.1　基于极大似然估计法的模型参数估计

管道腐蚀退化数据 n 组，每组存在 mi 个退化数据，记 Y i = [Y 1（t1），Y2（t2），…，Ymi
（tmi

）]，i = 1，2，⋯，N，其中，

tj( j = 1，2，⋯，mi)为第 i 组退化监测数据对应的检测时刻。首先，根据计算 Hurst 指数，确定描述管道腐蚀的

FBM 形式，记 BH， i = [ BH（t1，i），BH（t2，i），…，BH（tmi，i）]，得出 ΔBH，i（tj，i）= ΔBH（tj，i）− ΔBH（tj − 1，i），即每组管道性能退

化量之差 ΔY i 可以表示为 ΔYH， i = [ΔBH，i( t1，i)，ΔBH， i( t2，i)，…，ΔBH，i( tmi，i) ]。根据非线性 FBM 特性，ΔY i 服从多

元正态分布，记 ΔY i ∼N ( μ i，Σ i)。
ì
í
î

μ i = μ λΦ i，

Σ i = σ 2
λ  Φ i ΦT

i + Ψ i = σ 2
H Q i + σ 2

ε D i + σ 2
λ  Φ i ΦT

i ，
（12）

式中：μ i 和 Σ i 分别表示第 i组退化数据的均值和协方差函数；Φ i = [ϕ1，i，ϕ2，i，⋯，ϕmi，i ]为对漂移系数进行分数阶

积分的集合，ϕm，i =∫
tmi - 1

tmi

η（γ；β）dy ( )i = 1，2，…，N ；Q i 表示关于扩散系数 σ 2 的高阶协方差矩阵；D i 表示为关于测

量误差 ε高阶协方差矩阵。Q i 和 D i 的高阶矩阵形式可以表示为

Q i =

é

ë

ê

ê

ê

ê

ê
ê
êê
ê

ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

úúú
ú

ú

ú

ú

úE ( )BH ( )t1 BH ( )t1 E ( )BH ( )t1 BH ( )t2 ⋯ E ( )BH ( )t1 BH ( )tN

E ( )BH ( )t1 BH ( )t2 E ( )BH ( )t2 BH ( )t2 ⋯ E ( )BH ( )t2 BH ( )tN

⋮ ⋮ ⋱ ⋮
E ( )BH ( )t1 BH ( )tN E ( )BH ( )t2 BH ( )tN ⋯ E ( )BH ( )tN BH ( )tN

mi × mi

， （13）

D i =

é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

úúú
ú

ú

ú
1 − 1 0 ⋯ 0

− 1 2 − 1 ⋯ 0

⋮ − 1 2 ⋯ ⋮
0 ⋮ ⋮ − 1

0 0 ⋯ − 1 2 mi × mi

。 （14）

如 果 已 获 得 N 组 管 道 性 能 退 化 数 据 Y i =[ Y 1，Y2，⋯，YN ]，那 么 N 组 退 化 数 据 之 差 记 作 ΔY =

[ΔY1，ΔY2，⋯，ΔYN ]。根据非线性 FBM 特性，关于模型未知参数Θ的对数似然函数可表示为

L (Θ | ΔY ) =− ln（2π）
2 ∑

i = 1

N

mi − 1
2∑i = 1

N

ln ( )|| Σ i − 1
2∑i = 1

N

( )ΔY i − μλΦ i

T∑
i = 1

N

( )ΔY i − μλΦ i 。 （15）
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通过式（15）对 μλ和 σ 2
λ 进行一阶求偏导得到关于 μλ和 σ 2

λ 的极大似然估计值为

μ̂ λ =
∑
i = 1

N

ΔY iΦT
i

1

σ 2
λ

Σ − 1
i

ΦT
i

Σ − 1
i

σ 2
λ

Φ i

， （16）

σ̂ 2
λ =
∑
i = 1

N

( )ΔY i − μλΦ i

T 1

σ 2
λ

Σ − 1
i （ΔY i − μλΦ i）

∑
i = 1

N

mi

。 （17）

将式（16）（17）带入式（15），可得

L ( μλ，σ 2
λ，σ 2

H，σ 2
ε，β，H | ΔY ) =− 1

2∑i = 1

N

ln ( )|||||||
|
|||| Σ i

σ 2
λ

− 1 + ln ( 2π ) + ln σ̂ 2
λ

2 ∑
i = 1

N

mi。 （18）

如式（18）所示，具有高维特性的似然函数难以最大化求解参数的极大似然估计值。通过 MATLAB 中基

于单纯形法的 fminsearch 搜索方法，能有效求解高维似然函数。因此，通过 fminsearch 算法对 σ 2
H、σ

2
ε、β和 H 进

行极大似然估计。最后，μλ和 σ 2
λ 的极大似然估计值 μ̂ λ和 σ̂ 2

λ 通过式（16）（17）求得。

2.2　基于贝叶斯推理的漂移系数估计

输油管道在生产、存储和使用过程中外界环境以及运行工况有差异性，即使同一批次生产的管道，其退

化轨迹也会表现出固有的不一致性。随机系数 λ用于描述退化速率，因管道的不同而变化，具有不确定性。

仅依赖在特定实验条件下获取的同批次管道腐蚀历史退化数据对管道腐蚀进行 RUL 的预测往往无法反映

管道最新的腐蚀情况信息。因此，需要实时退化数据的收集和处理，不断迭代更新随机系数和预测过程，提

高预测的准确性和可靠性。对于使用中的管道，贝叶斯推理能够有效结合先验信息和观测数据来给定模型

参数的后验分布。因此，基于前 N 组管道腐蚀退化数据的模型参数估计值为先验信息，结合新收集的退化信

息进行模型随机参数的后验分布更新，可以提高 RUL 的预测精度。

通过极大似然估计法得到的 μ̂ λ和 σ̂ 2
λ 作为 μλ和 σ 2

λ 的先验值，及固定参数 σ 2
H、σ

2
ε、β和 H 来反映管道腐蚀性

能退化。

由极大似然估计算法可知，基于同类条件下获取的管道性能退化数据，λk 的先验分布满足

f ( λk) =
1

2πσ̂ 2
λ

exp
é

ë

ê
êê
ê
ê
ê − ( )λk − μ̂ λ 2

2σ̂ 2
λ

ù

û

ú
úú
ú
ú
ú
。 （19）

假设在 tk 时刻，第 i条管道共获得 k个检测退化数据，为

Y ∗
i = [Y ∗

i ( t1)，Y ∗
i ( t2)，⋯，Y ∗

i ( tk) ]。 （20）

利用新收集的退化监测数据 Y *
i 更新随机系数 λk 的后验分布 f ( λk|Y *

i )，根据贝叶斯推理，则有

f ( λk|Y ∗
i )∝ f (Y ∗

i | λk ) f ( λk)。 （21）

根据 FBM 的性质，Y *
i 服从多元正态分布，即 Y ∗

i ∼N ( μ i，Σ i)。由于式（21）中 f (Y *
i | λk )和 f ( λk)均服从正态

分布，则有共轭正态分布可知，后验分布 f ( λk|Y *
i )也服从正态分布：

f ( λk |Y *
i ) =

1

2πσ̂ *2
λ

exp
é

ë

ê
êê
ê
ê
ê − ( )λk − μ̂*

λ

z

2σ̂ *2
λ

ù

û

ú
úú
ú
ú
ú
。 （22）

式（21）中随机系数 λk 的后验分布 f ( λk|Y *
i ) 可以改写为

f ( λk|Y ∗
i )∝ exp

é

ë

ê
êê
ê− 1

2
λ2

k

é
ë
êêêê

ù
û
úúúúΦT

kΨ − 1
k Φ k +

1

σ̂ 2
λ

ù

û
úúúú+λk

é
ë
êêêê

ù
û
úúúúΔY *

i
TΨ − 1

k Φ k +
μ̂ λ
σ̂ 2
λ

。 （23）

对比式（15）的似然函数形式，μ̂*
λ 和 σ̂ 2

λ
* 可表示为

μ̂∗λ =
σ̂ 2
λ Y ∗T

i Ψ − 1
k Φ k + μ̂ λ

1 + σ̂ 2
λΦT

kΨ − 1
k Φ k

， （24）
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σ̂ *2
λ =

σ̂ 2
λ

1 + σ̂ 2
λΦT

kΨ − 1
k Φ k

。 （25）

利用 fminsearch 算法求解式（18），再代入式（24）（25）进行漂移系数的超参数更新。

3　实验验证

3.1　实验数据

实验数据来源于中石油西南油气田重庆气矿于重庆天高线天然气输送管道真实测量的腐蚀数据，测量

数据来源于天高线云安 24 井至万州末站间的天然气输送管道，并以云安 012-1 井站外阀室为界限将管道划

分为 A、B 两端。并通过采用电阻探针监测方法进行内腐蚀监测，检测装置设置在管道顶部并与管道内壁顶

部对齐，如图 1 所示。腐蚀深度等数据通过 Metal Samples 公司的 MS3510E 远程数据采集记录仪传输至数据

库储存。

腐蚀监测点于 2011 年 6 月开始投入使用，至 2019 年 9 月期间，共完成了 56 期腐蚀数据监测与采集，原始

腐蚀变化速率及累计腐蚀深度数据如图 2 所示。其中 A 段起点为云安 24 井，A 段末端为云安 012-1 井外阀

室，B 段起点为云安 012-1 井外阀室，B 段末端为万州末站。

利用极大似然方法获得随机系数的超参数的先验分布，将 A 段壁厚腐蚀退化数据作为测试数据，更新随

机系数的超参数的后验分布；将 B 段壁厚腐蚀退化数据作为验证数据，再将更新后的超参数代入剩余寿命分

布表达式中，利用更新后的模型参数估计值对腐蚀壁厚进行 RUL 预测。

3.2　实验验证

为了验证本文方法的有效性和准确性，对 3 种模型进行对比分析：

1）M1：固定漂移系数的非线性 Wiener 过程，具有与本文方法相同的漂移系数参数，其形式为 Xt = X 0 +

λ∫
0

t

 η (γ；β ) dγ + σB ( t)。

2）M2：动态漂移系数的非线性非马尔可夫 FBM 退化过程。

3）M3：考虑测量误差的具有动态漂移系数的非马尔可夫 Wiener退化过程。

M3 和 M2 均属于 FBM 模型，区别在于 M3 考虑测量误差和记忆效应双重影响。M1、M2 和 M3 在进行

RUL 之前，需要确定非线性函数 η (γ；β )的形式。为了保证对比实验的公平性，选取的非线性函数形式为指

数函数，即 η (γ；β ) = βexp ( βγ)。将上述 3 种模型应用到腐蚀退化数据中，验证所建模型对管道腐蚀状态的预

测能力，同时，比较 3 种模型的预测效果与精度，以说明本文方法的有效性和适用性。

图 1　天然气集输管道腐蚀监测

Fig. 1　　The corrosion monitoring of natural 

gas transmission pipeline

图 2　原始腐蚀数据

Fig. 2　　Raw corrosion data
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对于腐蚀管道退化数据，失效阈值设置 130 mm。在首次失效阈值的定义下，计算得到腐蚀管道的寿命

T = 95 month。为了更好地展示预测结果，选取第 50、60、70、80、90 month 预测周期，进行腐蚀管道的 RUL 预

测。图 3 为预测结果。

从图 3 可以看出，与基于标准 BM 的非线性 Wiener过程退化模型预测的结果相比，基于 FBM 的方法（M2

和 M3）RUL 的预测结果更接近实际 RUL 值，表明基于 FBM 的 RUL 预测方法更能表征管道腐蚀退化过程中

的非马尔可夫性。与具有动态漂移系数而不考虑误差影响的 FBM 模型相比，随着观测循环周期的增加，所

提出预测方法的概率密度函数（probability density function，PDF）可以提供更好的可信度区间，在图 3 中表现

为其 PDF 的置信区间更窄，具有更高的可信度。

为 了 定 量 分 析 不 同 模 型 预 测 RUL 的 误 差 大 小 ，采 用 平 均 绝 对 百 分 比 误 差 MAPE（mean absolute 

percentage error）和均方根误差 RMSE（root mean square error）2 个指标来评判 RUL 预测结果的准确性。

MAPE =
1
n∑i = 1

n || yi − ŷ i

y i

× 100%， （26）

RMSE =
1
n∑i = 1

n

( )yi − ŷ i

2

。 （27）

M1、M2 和本文方法（M3）的预测结果评价指标如表 1 所示。从表 1 中可以看出 M3 模型预测结果的

MAPE 和 RMSE 一直都是低于 M1、M2 预测结果的 MAPE 和 RMSE，表明 M3 的 RUL 预测精度最高，与图 3 中

M3 提供更好的 PDF 可信度相吻合。M2 模型考虑了历史退化状态对未来退化状态的潜在影响，M2 模型预测

结果的 MAPE 和 RMSE 略低于 M1 模型预测结果的 MAPE 和 RMSE。而 M3 考虑了管道腐蚀非马尔可夫退化

过程受到测量误差的敏感影响，因此，本文方法预测腐蚀管道 RUL 的能力优于 M1、M2。

在管道腐蚀过程中，直接检测的腐蚀数据往往含有不确定性的测量误差，这种不确定性会掩盖或者放大

某些退化特征，加剧非马尔可夫退化过程的复杂性。因此考虑腐蚀数据测量误差和记忆效应双重影响的非

马尔可夫 Wiener过程退化模型 M3 在长期预测上具有更高的精度。

图 3　不同模型预测结果对比

Fig.3　　Prediction results of different models

表 1　统计学指标对比

Table 1　　Statistical indicators

方法

M3（本文方法）

M2

M1

RMSE/μm

6.60

10.42

11.47

MAPE/%

34.19

52.87

70.40
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4　结束语

针对输油管道腐蚀退化过程存在非线性、随机误差与记忆效应双重作用的问题，研究了基于非线性非马

尔可夫 Wiener 过程的管道腐蚀深度预测方法，打破传统 Wiener 过程模型受强马尔可夫性的限制。首先，建

立了考虑随机误差影响的非线性 FBM 退化模型，描述管道腐蚀深度非马尔可夫退化过程；然后，利用极大似

然估计法对 FBM 模型未知参数进行估计，并利用贝叶斯推理对 FBM 模型的超参数进行更新；最后，基于现

场实际内腐蚀监测数据的验证，研究证明了考虑测量误差的非马尔科夫 Wiener 退化模型的有效性。与传统

的固定参数非线性 Wiener模型以及动态漂移系数的非线性 Wiener过程相比，该模型在长期预测中显示出了

更高的可靠性。此外，在使用腐蚀探针获取的腐蚀数据进行预测时，尽管未对原始数据进行预处理，且数据

受到测量误差的影响，模型依然能够准确地反映管道的腐蚀状况。未来的研究可进一步对腐蚀数据进行处

理，以更精确地反映管道的腐蚀状态，从而进一步提升预测精度。
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