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Knowledge guidance and fine-grained information enhancement for
unsupervised domain adaptation person re-identification
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Abstract: Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source
domain to an unlabeled target domain, playing a very important role in person re-identification. In real-world
applications, video-based pedestrian data are often available, making it feasible to obtain single-camera-view
labels in the target domain. However, existing UDA methods typically ignore this readily accessible information,
thereby limiting performance improvements. To address this issue, we propose a knowledge-guided and fine-
grained information enhancement framework for UDA person re-identification. A novel paradigm is introudced

that leverages single-view labeled pedestrian samples in the target domain to fully exploit intra-domain
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information. Meanwhile, source-domain knowledge is used as guidance to assist the model to extract more
discriminative target-domain pedestrian representations, effectively mitigating domain shift compared with
conventional knowledge-transfer strategies. Furthermore, local pedestrian cues are integrated into global features
to strengthen fine-grained feature expression. Experiments conducted on two publicly datasets fully demonstrate
the effectiveness and superiority of the proposed method.

Keywords: person re-identification; unsupervised domain adaptation; knowledge guidance; fine-grained

information enhancement
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Fig.1 Knowledge guidance and fine-grained information enhancement for unsupervised domain

adaptation person re-identification
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Fig.3 Parametric analysis
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