给排水科学与工程“1 + 3 + 6”实验教学系统改革探索与思考

李学美, 任伯帆, 张鹏
（湖南科技大学 土木工程学院, 湖南 湘潭 411201）

摘要: 文章针对给排水科学与工程(给水排水工程) 专业内涵和方向的变化发展与实验课教学的现状存在的主要矛盾, 结合数字化实验教学建设, 深入细致地分析了如何在给排水科学与工程专业实验教学实践中转变观念, 打开思路, 优化内容, 提高管理, 并提出了建设“1 + 3 + 6”模式的给排水科学与工程实验教学系统, 为给排水科学与工程专业实验课程教学改革提出了一些有益的方法和建议。

关键词: 给排水科学与工程; 实验教学; 数字化

中图分类号: G642.0 文献标志码: A 文章编号: 1005-2909(2014)05-0103-04

给水排水工程专业(2012 年更名为给排水科学与工程)自 1952 年创办以来,得到了空前的发展, 同时行业的内涵及外延也发生了很大的变化。2011 年全国高校达到 156 个办学点, 且是高就业率、需求旺盛的专业之一。但在全球性水污染严重等问题突出的背景下, 给排水科学与工程专业的主要矛盾由“水量”转移到“水质”“水质”“水质”问题日益突出。面对新需求和新转变, 急需以社会主义市场经济及学科发展的内在规律为导向, 深入研究和创新人才培养教育教学方法[1]。

给排水科学与工程实验教学是本专业的重要课程内容, 也是体现行业新发展新需求的主要教学环节。学生通过实验课的学习, 加深了对水科学、水工程及水处理基本理论的理解, 提高了设计实验方案、组织水处理实验、操作维护水处理仪器设备能力。实验教学对培养学生的专业基本操作技能、严谨治学的工作态度、探索研究的创新精神、独立工作的创业意识和适应社会需求、增强社会服务意识等有着特别重要的意义。给排水科学与工程专业数字化实验教学改革是在遵循专业规律和要求的基础上, 结合现代信息技术将实际实验资源数字化的新兴实验教学手段, 是适应给水排水科学与工程专业内涵及外延变化进行的积极探索2-3]。文章将结合湖南科技大学给水排水工程专业数字化实验教学资源建设实践中的探索性改革, 提出在该专业实验教学改革方面的思考。

一、实验教学现状及存在的问题

为了提高实验教学质量, 湖南科技大学开展了一些实验教学改革, 取得了
一些可取的成绩。但从总体上看，实验教学并未真正摆脱传统教学模式，现代教育技术在实验教学中的应用还处于形式，实验室管理模式落后等。因此，给排水科学与工程实验教学需根据行业需求，办学特色和人才培养方向，尽快改革以适应行业对专业人才数量和质量上的要求。

（一）教学指导思想出现偏差
以往的实验教学内容往往依附于理论课程教学，而不是独立的系统，就出现了实验课主要是为了验证课堂讲授的相关理论知识的现象。如水质工程学教学中，在相应理论课程上完之后开设3~4个验证型实验课；在实验过程中，教师根据学生对理论掌握程度，调整实验内容等，实验之前学生就已经知道了实验结果和现象，实验教师在实验过程中侧重测试实验结果验证的相关理论知识。这样的教学模式导致学生被动地按照实验讲义简单完成实验，产生实验验证理论，重理论轻实践的观念，出现工程意识淡薄，整体专业知识系统学习出现偏差等倾向。

（二）实验教学内容呆板
实验课时量相对较少，教学内容部分重复，教学方法单一，专业实验工程特征不明显，教学设备陈旧等，由于这些局限使实验教学未能深入进行面流于形式。其次，验证性实验多，设计性、综合性、创造性、观察思考性实验少，导致学生被动接受教师安排，机械完成规定程序和实验任务，实验兴趣不浓，热情不够；分析问题和解决问题的能力不够，缺乏学习主动性，个性化发展和创新能力培养不足等。

（三）实验教学资源不足
首先，实验教学软件建设不够。专业性、权威性、实用性强的实验教材建设不足，缺乏多媒体实验教学资源、CAI 课件等。以往的实验教学内容从相应的理论课程教材中的实验部分选，教材不同，实验内容不同，整个专业的实验教学内容由几本教材拼凑而成。没有形成针对本校本专业学生实际能力水平、学科专业特色和已有办学条件的系统性、固定性、针对性的实验教材和教学。其次，实验教学硬件建设还有很大的发展空间，随着学生人数的增加和给排水学科主要矛盾从“水量”到“水质”的转变，设备更新不够，仪器台套数不足等现象普遍存在。

（四）实验教学管理落后
实验教学管理落后主要是实验开放程度低，单纯依赖硬件实验设备，这些都限制了学生的综合实践条件。其是缺乏有效的实验教学考核模式和机制，教学和管理模式一条不变等，造成实验管理跟不上发展。

二、实验教学改革的思考与探索
针对目前高等院校给排水科学与工程专业实验教学中存在的问题，需教师及专业人员积极探索，深入思考，辛勤劳动，多方面，多途径，创造性地解决问题。文章结合湖南科技大学给排水科学与工程专业实验教学资源的建设实践探索，提出在给排水科学与工程专业实验教学实践中需从转变观念、打开思路，优化内容，提高管理等方面着手建设给水排水工程专业“1+3+6”实验教学体系；一个实验教学体系，三个实验教学层次，六个实验教学考教目标。

（一）转变实验教学观念
首先，改变专业教学依附于理论课程教学的观念，形成给水排水工程实验教学自成一体的指导思想。充分挖掘给排水科学与工程课程内容的内在联系，形成由浅入深、由简到繁，逐步深入的科学体系，着以给水排水科学与工程专业领域的科学研究和工程设计应用为背景展开实验教学，以训练学生的科学思维方法和严谨工作态度。真正实现实验教学体系与理论教学体系形式的教学互动和内涵对立统一。其次，给水排水科学与工程专业实验教学体系的内容和人才培养的目标应与行业发展、社会需求、就业面向、学校定位等相适应。

（二）打开实验教学思路
为了提高给水排水科学与工程实验教学水平，一方面要积极筹划建设实验室和加大投入教学设备，另一方面要不断探索，改革、实施数字化实验教学，这将是我们改革的方向和解决教学矛盾的主要方向。建好数字化实验教学资源后，任何一个学生，在任何时候，任何一个有网络的地方，都可以通过计算机调用实验教学软件和其他资源。给排水科学与工程专业的工程背景较强，建设数字化实验教学具有突出优势，能有效解决当前实验教学传统模式存在的多种问题。可实现实验教学资源的开发、共享，有效利用，同时打破实验教学受时空和其他资源的限制，降低实验成本，提高实验效率和教学效果，有效强化综合性和设计性实验等。

如水力学实验教学，按传统的方式按试验指导
（三）优化实验教学内容

优化实验教学内容是实验教学改革的核心，同时是体现给排水科学与工程专业内涵、反映专业前沿趋势的关键。因此，给排水科学与工程实验教学改革过程中，以课程间实验的有机组合、科学性、学术性和专业性为原则进行改革。实验教学改革应分层次、分阶段地进行，以达到培养目标的要求。实验教学改革的实质是提高学生的实践能力和综合素质。
表 1 给水排水工程专业实验教学体系

<table>
<thead>
<tr>
<th>层次</th>
<th>实验</th>
<th>特点</th>
<th>试验方式</th>
<th>考核目标</th>
</tr>
</thead>
<tbody>
<tr>
<td>层次一：</td>
<td>水力学</td>
<td>知识点单一, 内容浅显，涉及面窄，难度小</td>
<td>CAI课件辅助</td>
<td>①实验操作(V) ②运用知识(V)</td>
</tr>
<tr>
<td>基础实验</td>
<td>水分析化学</td>
<td></td>
<td>分段分组</td>
<td></td>
</tr>
<tr>
<td>第 3～4 学期</td>
<td>水处理微生物学</td>
<td></td>
<td>段课程</td>
<td>③随机问答(V) ④实验报告(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⑤实验论文(V) ⑥答辩()</td>
</tr>
<tr>
<td>层次二：</td>
<td>建筑给水排水工程</td>
<td>知识点难, 专业性强, 难度大</td>
<td>CAI课件为主</td>
<td>①实验操作(V) ②运用知识(V)</td>
</tr>
<tr>
<td>专业实验</td>
<td>给水排水管道系统</td>
<td></td>
<td>分段分组</td>
<td>③随机问答(V) ④实验报告(V)</td>
</tr>
<tr>
<td>第 5～7 学期</td>
<td>水质工程学</td>
<td></td>
<td>分段课程</td>
<td>⑤实验论文(V) ⑥答辩()</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>层次三：</td>
<td>给水处理技术</td>
<td>知识点多, 涉及面广, 难度大</td>
<td>以“课题”的形式</td>
<td>①实验操作(V) ②运用知识(V)</td>
</tr>
<tr>
<td>专业综合实验</td>
<td>污水处理技术</td>
<td>课题组, 实验周</td>
<td></td>
<td>③随机问答(V) ④实验报告(V)</td>
</tr>
<tr>
<td>第 7 学期</td>
<td>水质仪器分析</td>
<td></td>
<td>水处理工艺和流程系统</td>
<td>⑤实验论文(V) ⑥答辩()</td>
</tr>
</tbody>
</table>

3. 六个教学实验考核目标

给排水科学与工程专业实验教学中，考核是手段，技能的综合考核机制，能强化技能考核的内容，真实反映教学效果。给排水科学与工程专业实验教学中的三个考核目标是：实验操作规范性，知识灵活运用程度，随机问答情况。实验报告撰写情况，实验论文质量，实验答辩情况。六个实验考核目标宜结合三个教学层次灵活综合考虑，考核目标随教学层次的不同重点而定选，如表 1。在基础实验中，水力学主要考察学生对水力学基本原理的掌握，实验操作的规范性，结果的正确性等，建议以提交实验报告、实验操作过程为考核目标，体现实验结果和过程严重的思想。但专业综合实验，水处理实验技能是以课题组、实验周形式完成，主要锻炼学生通过团队协作灵活运用专业知识解决实际工程性问题的能力，建议考核成绩以过程考核、课题答辩，提交高质量研究报告或论文的形式重点考察学生综合素质和管理能力等。

（四）提高实验教学管理

提高实验教学管理采用灵活的管理方式，如提高实验室开放程度，使学生有更多的动手机会，有效解决实验人数多与仪器设备不足的矛盾；把实验分为主线和选修，有余力的学生可以在完成必修实验后做选修实验；利用网络等技术增加学生学习实验课程的途径等。

三、结语

给排水科学与工程专业实验教学有其内在规律，结合数字化实验教学手段能充分发挥其优势来提高实验教学质量和培养学生综合素质。顺应时代的发展和行业的需求，以社会主义市场经济及学科发展的内在规律为导向，积极探索总结实验教学规律，改革实验教学体系，建设具有鲜明学科特色的给排水科学与工程专业实验教学，真正有效地开展教学，切实达到教学目标。

参考文献：

The reform of “1 + 3 + 6” experiment teaching system in water science and engineering specialty
LI Xuemei, REN Bozhi, ZHANG Peng
(School of Civil Engineering, Hunan University of Science & Technology, Xiangtan 411201, P. R. China)
Abstract: The problem of experiment teaching system current situation and the change professional connotation and direction in science and engineering specialty were stated in the paper. Combined with the construction of digital experimental teaching, how to change idea, broaden scope of mind, optimizing content and improve management in water science and engineering practical experiment teaching were analyzed in detail to construct “1 + 3 + 6” experiment teaching system. Some helpful measures and proposals were suggested.
Keywords: water science and engineering; experiment teaching system; digitization