土木与环境工程学报  2019, Vol. 41 Issue (3): 49-57   PDF    
多层加筋垫层刚性桩网复合地基的承载特性
郎瑞卿 1,3, 闫澍旺 3, 赵栋 2     
1. 天津城建大学 土木工程学院, 天津 300384;
2. 邢台职业技术学院 建筑工程系, 河北 邢台 054000;
3. 天津大学 建筑工程学院, 天津 300072
摘要:为研究多层加筋垫层刚性桩网复合地基的承载特性,将设置有多层土工格栅的加筋垫层视为大挠度薄板进行分析,运用层合板理论,模拟多层土工格栅与碎石垫层之间的相互作用,建立加筋垫层抗弯刚度矩阵的计算方法。考虑刚性桩网复合地基的三维应力和位移边界条件,根据静力平衡条件,建立加筋垫层应力函数和挠度微分控制方程,并利用伽辽金方法进行求解。在此基础上,利用Winkler地基梁理论和大挠度薄板理论对桩土应力比和格栅拉力进行计算。最后,运用实际工程对计算方法进行验证,并综合分析格栅总层数、铺设间隔和位置等因素对桩土应力比及格栅拉力的影响。研究结果表明:理论计算结果与实测结果较为吻合;随着格栅总层数的增大,桩土应力比增大而格栅拉力降低,铺设2~3层格栅效率最高;随着铺设格栅间隔和底层格栅距桩帽距离的增大,桩土应力比降低,而格栅拉力增大。
关键词土工格栅    桩网复合地基    层合板理论    薄板理论    桩土应力比    土工格栅拉力    
Analysis of bearing capacity of rigid pile-net composite foundation with multi-layer reinforced cushion
Lang Ruiqing 1,3, Yan Shuwang 3, Zhao Dong 2     
1. School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, P. R. China;
2. Department of Architecture and Civil Engineering, Xingtai Polytechnic College, Xingtai 054000, Hebei, P. R. China;
3. School of Civil Engineering, Tianjin University, Tianjin 300072, P. R. China
Abstract: This study aims to explore the bearing characteristics of rigid pile-net composite foundation with multi-layer reinforced cushion. Firstly, the reinforced cushion layer with multi-layer geogrids is regarded as a large deflection plate for simplification. The interaction characteristics between multi-layer geogrids and gravel cushions were analyzed based on laminating theory. The stiffness matrix of reinforced cushion was then derived. Considering the actual three-dimensional stress and displacement boundary of the rigid pile-net composite foundation, the stress function and the deflection differential control equations were deduced through the static equilibrium. Subsequently, Galerkin method was used to solve the equations. Based on the deformation of the reinforced cushion layer, the pile-soil stress ratio of rigid pile-net composite foundation was calculated through Winkler foundation beam method and the tension force of geogrids was derived via large deflection plate theory. Finally, the calculation method was validated by practical engineering. The factors that affect pile-soil stress ratio and tension force, such as total number of geogrids, geogrids spacing and location of the geogrids, were systematically analyzed. It is shown that the analytical solutions agree well with the measured data. With increase of the total number of geogrid layers, the pile-soil stress ratio increases and the geogrid tensile force decreases. The most efficient number of geogrid layers is 2 or 3. With the increase of vertical spacing between geogrids and the spacing from the bottom geogrid to pile cap, pile-soil stress ratio decreases and tension force increases. More importantly, these findings may provide guidance on optimal design of geogrid in engineering practice.
Keywords: geogrid    pile-net composite foundation    laminated board theory    plate theory    pile-soil stress ratio    geogrid tension force    

作为刚性桩网复合地基的重要组成部分,加筋碎石垫层能够有效调节桩土应力比,使刚性桩承担较多填土荷载。土工格栅铺设的层数及位置等会影响加筋垫层的力学性能,从而影响刚性桩复合地基承载特性。因此,为保证工程的经济性和安全性,对加筋层数和铺设位置进行理论研究具有重要意义。

近年来,已有学者从调节桩土应力比、格栅拉力等角度对加筋垫层的工作性状和作用进行了研究,但对加筋垫层整体刚度的研究较少:Sun等[1]、Lu等[2]、钱劲松等[3]、闫澍旺等[4]通过理论推导,研究了加筋垫层对桩土应力比的影响,并开展了影响桩土应力比的因素研究,提出了相关影响规律和工程建议;Ariyarathne等[5]、Rowe等[6]和曹文昭等[7]通过数值模拟方法,研究了加筋垫层对刚性桩网复合地基荷载传递特性的影响;Xing等[8]和Cao等[9]通过现场试验,研究了加筋垫层对桩土应力比的影响;Liyanapathirana等[10]研究了格栅蠕变效应对加筋垫层工作性状的影响。关于格栅拉力计算方法,主要有英国BS8006法[11]、德国EBGEO法[12]、北欧手册法[13]和日本细则法[14]等。在此基础之上,Eekelen等[15]结合现场试验,对BS8006法进行了改进,并将计算结果与实测数据对比,验证了改进方法的准确性;Blanc等[16]通过离心机试验,研究了不同荷载类型下加筋体的变形特性,并运用EBGEO法进行了分析;魏平等[17]通过数值模拟,研究了双层格栅在动荷载作用下拉力及其增量大小分布;Haluordson等[18]将筋材假设为三维索网进行分析;Filz等[19]将筋材假设为板进行分析;徐超等[20]通过研制的试验设备,研究了不同位置的格栅受力特征,并提出了三维模式下拉力的计算方法;陈仁朋等[21]通过现场试验,研究了动静荷载下土工格栅的拉力特性;郑俊杰等[22]通过拉拔试验,研究了筋土界面特性。以上成果对认识加筋垫层在刚性桩网复合地基中的重要作用具有较好的参考价值,但研究多集中于试验和数值模拟,而理论研究多适用于单层格栅情况,不能反映加筋层数和位置等因素对桩土应力比及格栅拉力的影响,且数值模拟中加筋垫层整体刚度的取值差异较大[23],缺乏合理模拟多层加筋垫层力学特性的理论研究。

本文将设置有多层土工格栅的加筋垫层视为大挠度薄板[24],运用层合板理论模拟土工格栅与碎石之间的相互作用,结合应变连续条件,推导得到加筋垫层的刚度矩阵;结合加筋垫层真实边界条件,建立其挠度方程和应力函数,并利用伽辽金方程进行求解。在此基础上,利用温克尔地基梁理论对桩土应力比进行求解,并运用大挠度薄板理论对格栅拉力进行求解。最后,运用两组现场试验对推导方法进行验证,利用提出的理论方法,综合分析了格栅铺设总层数和位置等因素对桩土应力比及格栅拉力的影响。

1 计算模型和受力分析
1.1 基本假定

选取刚性桩网复合地基单桩处理范围内的矩形单元作为研究对象。坐标原点为左下角桩中心,z=0平面为桩帽顶,刚性桩沿x方向的间距为a,沿y方向的间距为b,加筋垫层任意点挠度为ω(x, y),如图 1所示。

图 1 计算状态示意图 Fig. 1 Schematic diagram of calculation state

将加筋垫层视为大挠度薄板,格栅与碎石的界面力学特性运用层合板理论进行模拟。主要假定:

1) 格栅与碎石变形均较小,分析过程中均处于弹性阶段,并且两者均满足虎克定律。

2) 格栅与碎石垫层之间无缝隙且变形连续。

3) 加筋垫层的挠度与其厚度为同一量级。

加筋垫层由碎石和n层格栅组成,总厚度为h。受到填土荷载作用时加筋垫层根据应变分为受压区和受拉区。受拉区由碎石和格栅组成,厚度为hx+hl,其中,第n层格栅距中性面的距离为hl,距加筋垫层下表面距离为hx;受压区由碎石组成,厚度为hy。格栅铺设间隔均为Δh。如图 2所示。

图 2 加筋垫层结构示意图 Fig. 2 Schematic diagram of reinforce cushion

1.2 加筋垫层受力分析
1.2.1 受拉区及受压区厚度计算

当加筋垫层受到填土荷载作用时,受压区顶面出现最大压应变εm,对应最大压应力为σm;受拉区底部第n层格栅产生的最大拉应变为εgn,对应最大拉应力为Tgn。中性轴O-O应力、应变均为零。如图 3所示。

图 3 加筋垫层应力及应变示意图 Fig. 3 Schematic diagram of stress and strain of reinforce cushion

加筋垫层任意横截面内满足应变连续条件,结合图 2图 3,可得各点应变关系为

$ \left\{\begin{array}{l}{\frac{\varepsilon_{\mathrm{m}}}{\varepsilon_{{\rm g} n}}=\frac{h_{y}}{h_{1}}} \\ {\frac{\varepsilon_{\mathrm{g} n}}{\varepsilon_{\mathrm{g} 1}}=\frac{h_{1}}{h_{1}-(n-1) \Delta h}}\end{array}\right. $ (1)

根据虎克定律,可得应力关系如式(2)所示。

$ \left\{\begin{array}{l}{\sigma_{\mathrm{m}}=T_{{\rm g} n} \frac{E_{\mathrm{m}} h_{y}}{E_{\rm g} b h_{1}}} \\ {T_{\mathrm{gl}}=T_{\mathrm{g} n} \frac{h_{1}-(n-1) \Delta h}{h_{1}}} \\ {T_{\mathrm{g}(n-1)}=T_{\mathrm{g} n} \frac{h_{1}-\Delta h}{h_{1}}}\end{array}\right. $ (2)

式中:Em为碎石抗压模量;Eg为格栅抗拉模量。在受拉区,忽略碎石垫层的抗拉强度,结合图 3及静力平衡条件,可得

$ \frac{1}{2} \sigma_{\mathrm{m}} b h_{y}=\sum\limits_{i=1}^{n} T_{\mathrm{g}i} $ (3)

将式(2)带入式(3),可得

$ \frac{1}{2} h_{y}^{2}=n \alpha\left(h_{1}-\frac{n-1}{2} \Delta h\right) $ (4)

式中:α=Eg/Em

根据图 2,可得几何关系

$ h=h_{1}+h_{y}+h_{x} $ (5)

联立式(4)、式(5),可得受压区厚度为

$ \mathrm{h}_{\mathrm{y}}=-\mathrm{n} {\rm{ \mathit{ α} }}+\sqrt{\mathrm{n} {\rm{ \mathit{ α} }}\left[\mathrm{n} {\rm{ \mathit{ α} }}+2 \mathrm{h}-2 \mathrm{h}_{\mathrm{x}}-(\mathrm{n}-1) \Delta \mathrm{h}\right]} $ (6)

受拉区厚度为

$ \frac{h_{1}+h_{x}=h+n \alpha-}{\sqrt{n \alpha\left[n \alpha+2 h-2 h_{x}-(n-1) \Delta h\right]}} $ (7)
1.2.2 抗弯刚度计算

由层合板理论,可知加筋垫层中第k层的应力-应变关系为

$ \left[\begin{array}{c}{\sigma_{x}} \\ {\sigma_{y}} \\ {\tau_{x y}}\end{array}\right]_{k}=\left[\begin{array}{ccc}{\overline{Q}_{11}} & {\overline{Q}_{12}} & {\overline{Q}_{16}} \\ &{\overline{Q}_{22}} & {\overline{Q}_{26}} \\ {\operatorname{sym.}} & &{\overline{Q}_{66}}\end{array}\right]_{k}\left\{\left[\begin{array}{c}{\varepsilon_{x}^{0}} \\ {\varepsilon_{y}^{0}} \\ {\gamma_{x y}^{0}}\end{array}\right]+z\left[\begin{array}{c}{K_{x}} \\ {K_{y}} \\ {K_{z}}\end{array}\right]\right\} $ (8)

式中:εx0、εy0分别为中面xy向正应变;γxy0为中面剪应变;z为第k层距中面距离;Ki为该层的弯曲挠曲率。计算中,规定材料主轴方向与坐标轴xy方向一致,故沿土工格栅x向和y向为1和2方向,xy平面剪应力方向为6方向。Qij为退缩刚度系数,可按式(9)计算。

$ \left\{\begin{array}{l}{\overline{Q}_{11}=\frac{E_{1}}{1-\mu_{12} \mu_{21}}} \\ {\overline{Q}_{12}=\mu_{12} Q_{22}} \\ {\overline{Q}_{22}=\frac{E_{2}}{1-\mu_{12} \mu_{21}}} \\ {\overline{Q}_{66}=G_{12}}\end{array}\right. $ (9)

式中:Ei为弹性模量;μij为泊松比;Gij为剪切模量。

层合板任意横截面合内力矩可按式(10)计算。

$ \left(M_{x}, M_{y}, M_{x y}\right)=\int_{-\left(h_{x}+h_{1}\right)}^{h_{y}}\left(\sigma_{x}, \sigma_{y}, \tau_{x y}\right) z \mathrm{d} z $ (10)

将式(8)带入式(10)中,可得弯矩与截面耦合刚度、截面弯曲刚度系数的关系为

$ \begin{array} [c]{c} & \left[ \begin{matrix} {{M}_{x}} \\ {{M}_{y}} \\ {{M}_{xy}} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} {{B}_{11}} & {{B}_{12}} & {{B}_{16}} \\ {} & {{B}_{22}} & {{B}_{26}} \\ \text{sym}\text{.} & {} & {{B}_{66}} \\ \end{matrix} \right]\left[ \begin{matrix} \varepsilon _{x}^{0} \\ \varepsilon _{y}^{0} \\ \gamma _{xy}^{0} \\ \end{matrix} \right]+ \\ & \left[ \begin{matrix} {{D}_{11}} & {{D}_{12}} & {{D}_{16}} \\ {} & {{D}_{22}} & {{D}_{26}} \\ \text{sym}\text{.} & {} & {{D}_{66}} \\ \end{matrix} \right]\left[ \begin{matrix} {{K}_{x}} \\ {{K}_{y}} \\ {{K}_{xy}} \\ \end{matrix} \right] \\ \end{array} $ (11)

式中:Bij为拉伸与弯矩之间的耦合刚度;Dij为弯曲刚度系数,其值与层和板内力矩、曲率及扭曲率有关。其中,耦合刚度Bij可按式(12)计算。

$ B_{i j}=\int_{-( h_{x}+h_{1})}^{h_{y}} \overline{Q}_{i j} z \mathrm{d} z=\frac{1}{2} \sum\limits_{k=1}^{n}\left(\overline{Q}_{i j}\right)_{k}\left(z_{k}^{2}-z_{k-1}^{2}\right) $ (12)

式中:zk为第k层坐标。

弯曲刚度系数Dij可按式(13)计算。

$ D_{i j}=\int_{-\left(h_{x}+h_{1}\right)}^{h_{y}} \overline{Q}_{i j} z^{2} \mathrm{d} z=\frac{1}{3} \sum\limits_{k=1}^{n}\left(\overline{Q}_{i j}\right)_{k}\left(z_{k}^{3}-z_{k-1}^{3}\right) $ (13)

对于多层加筋碎石垫层,认为格栅和碎石之间无弯矩和扭转耦合效应,即式(11)中D16D26为零。认为格栅为各向异性材料,故其退缩刚度系数Qgij

$ \overline{Q}_{{\rm g} i j}={{\left[ \begin{matrix} \frac{{{E}_{1}}}{1-{{\mu }_{12}}{{\mu }_{21}}} & \frac{{{\mu }_{12}}{{E}_{2}}}{1-{{\mu }_{12}}{{\mu }_{21}}} & 0 \\ {} & \frac{{{E}_{2}}}{1-{{\mu }_{12}}{{\mu }_{21}}} & 0 \\ \text{sym}\text{.} & {} & {{G}_{12}} \\ \end{matrix} \right]}_{k}} $ (14)

碎石为各向同性材料,故其退缩刚度系数Qmij

$ \overline{Q}_{\mathrm{m} i j}={{\left[ \begin{matrix} \frac{E}{1-{{\mu }^{2}}} & \frac{\mu E}{1-{{\mu }^{2}}} & 0 \\ {} & \frac{E}{1-{{\mu }^{2}}} & 0 \\ \text{sym}\text{.} & {} & G \\ \end{matrix} \right]}_{k}} $ (15)

将式(13)~式(15)带入式(11)并化简,可得加筋垫层的刚度矩阵为

$ \mathit{\boldsymbol{D}}=\frac{1}{3} \\ \left[ \begin{matrix} \sum\limits_{\text{k}=1}^{\text{M}+\text{n}}{\left( {\rm z}_{\text{k}}^{3}-{\rm z}_{\text{k}-1}^{3} \right)}{{\left( {{\overline{\text{Q}}}_{11}} \right)}_{\text{k}}} & \sum\limits_{\text{k}=1}^{\text{M}+\text{n}}{\left( \text{z}_{\text{k}}^{3}-{\rm z}_{\text{k}-1}^{3} \right)}{{\left( {{\overline{\text{Q}}}_{12}} \right)}_{\text{k}}} & 0 \\ {} & \sum\limits_{\text{k}=1}^{\text{M}+\text{n}}{\left( \text{z}_{\text{k}}^{3}-\text{z}_{\text{k}-1}^{3} \right)}{{\left( {{\overline{\text{Q}}}_{22}} \right)}_{\text{k}}} & 0 \\ sym. & {} & \sum\limits_{\text{k}=1}^{\text{M}+\text{n}}{\left( \text{z}_{\text{k}}^{3}-\text{z}_{\text{k}-1}^{3} \right)}{{\left( {{\overline{\text{Q}}}_{66}} \right)}_{\text{k}}} \\ \end{matrix} \right] $ (16)

加筋垫层由碎石和土工格栅组成,式(16)中任意元素可按式(17)计算。

$ \begin{array}{l}{D_{i j}=\frac{1}{3} \sum\limits_{\mathrm{m} j=1}^{M}\left(\overline{Q}_{\mathrm{m}i j}\right)_{\mathrm{m} j}\left(z_{\mathrm{m}j}^{3}-z_{\mathrm{m}j-1}^{3}\right)} \\ {+\sum\limits_{\mathrm{g} i=1}^{n}\left(\overline{Q}_{\mathrm{g} i j}\right)_{\mathrm{g}i}\left[t_{\mathrm{g}i}\left(\overline{z_{\mathrm{g}i}}\right)^{2}+\frac{1}{12} t_{\mathrm{g} i}^{3}\right]}\end{array} $ (17)

式中:mj为碎石的层数,共M层;zmj为该层中面到中性轴距离;gi为格栅的层数,共n层;$z_{ \overline{\mathrm{g} i}}$为土工格栅第gi层中面到中性轴的距离;tgi为格栅的厚度。

2 桩土应力比计算

图 1可知,研究对象的边界条件为四角点简支,其余位置自由。结合大挠度薄板理论,假定该加筋褥垫层的挠度方程ω(xy)表达式为

$ \omega=a A \sin \frac{\pi x}{a}+b B \sin \frac{\pi y}{b} $ (18)

式中:AB为与挠度有关的系数,其中,A=ωa/aB=ωb/bωaωb分别为边长为ab的边上对应的最大挠度。

引入该大挠度薄板的应力函数φ(xy),则ω(xy)和φ(xy)存在关系

$ \nabla^{4} \varphi=E\left[\left(\frac{\partial^{2} \omega}{\partial x \partial y}\right)^{2}-\frac{\partial^{2} \omega}{\partial x^{2}} \frac{\partial^{2} \omega}{\partial y^{2}}\right] $ (19)

式中:▽为拉普拉斯算子;E为加筋垫层的复合弹性模量。

将式(18)带入式(19)并化简,可得应力函数φ(xy)的四阶微分方程

$ \nabla^{4} \varphi=\frac{-A B E \pi^{4} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}}{a b} $ (20)

假定微分方程式(20)的特解为φp。结合边界条件并通过对比系数可得其特解φp

$ \varphi_{\mathrm{p}}=C \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} $ (21)

式中:

$ C=-\frac{a^{3} b^{3} A B E}{\left(a^{2}+b^{2}\right)^{2}} $ (22)

根据其他学者的研究可知[25-26],微分方程式(20)的解可写成

$ \varphi=-\frac{a^{3} b^{3} A B E}{\left(a^{2}+b^{2}\right)^{2}} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}+\frac{P_{x} y^{2}}{2}+\frac{P_{y} x^{2}}{2} $ (23)

式中:Pxx=0和x=a两边上中面力的平均值;Pyy=0和y=b两边上的中面力平均值。

由于加筋垫层受到均布竖向荷载且无水平荷载作用,故x=0与x=a两条边无相对位移,y=0与y=b两条边无相对位移,根据Newton-Leibniz公式可得

$ \left\{\begin{array}{l}{\int_{0}^{a}\left[\frac{1}{E}\left(\frac{\partial^{2} \varphi}{\partial y^{2}}+\mu \frac{\partial^{2} \varphi}{\partial x^{2}}\right)-\frac{1}{2}\left(\frac{\partial \omega}{\partial x}\right)^{2}\right] \mathrm{d} x=0} \\ {\int_{0}^{b}\left[\frac{1}{E}\left(\frac{\partial^{2} \varphi}{\partial x^{2}}+\mu \frac{\partial^{2} \varphi}{\partial y^{2}}\right)-\frac{1}{2}\left(\frac{\partial \omega}{\partial y}\right)^{2}\right] \mathrm{d} y=0}\end{array}\right. $ (24)

式中:μ为泊松比,可取为碎石泊松比[23]

对式(24)进行积分联立求解,可得

$ \begin{aligned} P_{x} &=\frac{C_{1}}{C_{3}}\left(A^{d}-\mu B\right)-\frac{2 \pi A B E a b\left(a^{2}+\mu b^{2}\right)}{C_{2}^{2} C_{3}} \cdot \\ & \sin \frac{\pi y}{b}+\frac{2 \mu \pi A B E a b\left(\mu a^{2}+b^{2}\right)}{C_{2}^{2} C_{3}} \sin \frac{\pi x}{a} \end{aligned} $ (25)
$ P_{y}=\frac{C_{1}}{C_{3}}\left(B^{2}-\mu A\right)-\frac{2 \pi A B E a b}{C_{2}^{2} C_{3}}\left(b^{2}+\mu a^{2}\right)\cdot\\ \sin \frac{\pi x}{a}+\frac{2 \mu \pi A B E a b\left(a^{2}+\mu b^{2}\right)}{C_{2}^{2} C_{3}} \sin \frac{\pi y}{b} $ (26)

式中:$C_{1}=\frac{E \pi^{2}}{4} ; C_{2}=a^{2}+b^{2} ; C_{3}=1-\mu^{2}$

PxPy代入式(23),可得到φ(xy)表达式。

假定外力作用下,大挠度板的内力虚功为δU,虚位移对应的外力虚功为δW,则根据虚功原理可得

$ \delta U=\delta W $ (27)

式中:内力虚功可按式(28)计算。

$ \delta U=\iiint\left(\sigma_{x} \delta \varepsilon_{x}^{z}+\sigma_{y} \delta \varepsilon_{y}^{z}+\tau_{x y} \delta \gamma_{x y}^{z}\right) \mathrm{d} x \mathrm{d} y \mathrm{d} z $ (28)

式中:σxσyτxy为薄板内任意点不同方向的应力;δεxz、δεyz、δγxyz为虚位移对应的应变。

外力虚功为薄板上弯矩、广义剪力和薄膜力与对应转角、位移的乘积和。为了方便计算,引入伽辽金方程,则式(27)可化简为

$ \begin{array}{c}{\iint\left[D \nabla^{4} \omega-h\left(\frac{\partial^{2} \varphi}{\partial y^{2}} \frac{\partial^{2} \omega}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial x^{2}} \frac{\partial^{2} \omega}{\partial y^{2}}-2 \frac{\partial^{2} \varphi}{\partial x \partial y} \frac{\partial^{2} \omega}{\partial x \partial y}\right)-\right.} \\ {q ] \omega \mathrm{d} x \mathrm{d} y=0}\end{array} $ (29)

式中:D为加筋垫层的弯曲刚度,可按式(16)计算;q为加筋垫层承担外荷载。

对式(29)进行积分并化简,可得

$ \begin{array}{l}{\frac{A D \pi^{4} b}{2 a^{2}}+\frac{A^{2} B a h\left[3 \pi^{4} E C_{2}^{2} C_{3} b^{2}\left(\mu b^{2}+a^{2}\right)+8\left(2 C_{3} \pi^{2} a^{2} b^{2}-3 \mu C_{1} C_{2}^{2}\right)\right]}{6 C_{2}^{2} C_{3}} \\ +\frac{A^{3} C_{1} \pi^{2} b h}{2 C_{3}}+\frac{4 B D \pi^{2} a}{b^{2}}+} \\ {\frac{A B^{2} \pi^{2} b h\left[E C_{2} C_{3} a^{2}\left(2 \pi^{2}-3\right)\left(b^{2}+\mu a^{2}\right)+3\left(C_{3} \pi^{2} a^{2} b^{2}-\mu C_{1} C_{2}^{2}\right)\right]}{6 C_{2}^{2} C_{3}} \\ +\frac{4 B^{3} C_{1} a h}{C_{3}}=\frac{2 a b q}{\pi}}\end{array} $ (30)
$ \begin{array}{l}{\frac{B D \pi^{4} a}{2 b^{2}}+\frac{A B^{2} b h\left[3 \pi^{4} E C_{2}^{2} C_{3} a^{2}\left(\mu a^{2}+b^{2}\right)+8\left(2 C_{3} \pi^{2} a^{2} b^{2}-3 \mu C_{1} C_{2}^{2}\right)\right]}{6 C_{2}^{2} C_{3}} \\ +\frac{B^{3} C_{1} \pi^{2} a h}{2 C_{3}}+\frac{4 A D \pi^{2} b}{a^{2}}+} \\ {\frac{A^{2} B \pi^{2} a h\left[E C_{2} C_{3} b^{2}\left(2 \pi^{2}-3\right)\left(a^{2}+\mu b^{2}\right)+3\left(C_{3} \pi^{2} a^{2} b^{2}-\mu C_{1} C_{2}^{2}\right)\right]}{6 C_{2}^{2} C_{3}}+ \\ \frac{4 A^{3} C_{1} b h}{C_{3}}=\frac{2 a b q}{\pi}}\end{array} $ (31)

联立式(30)、式(31)求解,可得AB。将结果带入式(18),则可求得ω(xy)的表达式。桩间土反力σs可通过Winkler地基梁理论[27]计算得到,则桩土应力比可按式(32)计算。

$ n=\frac{\sigma_{\mathrm{p}}}{\sigma_{\mathrm{s}}}=\frac{\left(\gamma H S-\sigma_{\mathrm{s}} S_{\mathrm{s}}\right)}{S_{\mathrm{p}}(\gamma H-q)} $ (32)

式中:σp为桩顶平均应力;σs为桩间土体平均应力;H为路堤填土高度;γ为填土容重;S为单桩处理面积;Sp为刚性桩横截面积;Ss为单桩处理范围内土体面积;q为加筋垫层承担荷载。

3 拉力计算

碎石垫层的抗拉强度为零,故加筋垫层受到填土荷载时,x方向拉力之和Tx全部由土工格栅承担,即

$ T_{x}=\sum\limits_{i=1}^{n} T_{\mathrm{g}i} $ (33)

根据薄板理论,拉力可按式(34)计算。

$ T_{x}=\sigma_{x} h=h \frac{\partial^{2} \varphi}{\partial y^{2}} $ (34)

将式(23)及式(25)、式(26)带入式(34),可得加筋垫层任意截面上xy方向所有格栅拉力之和TxTy,按式(35)、式(36)计算。

$ T_{x}=h \\ \left[\frac{C \pi^{2}}{b^{2}} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}+\frac{C_{1}}{C_{3}}\left(A^{2}-\mu B\right)-\frac{2 \pi A B E a b\left(a^{2}+\mu b^{2}\right)}{C_{2}^{2} C_{3}} \sin \frac{\pi y}{b}+\frac{2 \mu \pi A B E a b\left(\mu a^{2}+b^{2}\right)}{C_{2}^{2} C_{3}} \sin \frac{\pi x}{a}\right] $ (35)
$ T_{y}=h \\ \left[\frac{C \pi^{2}}{a^{2}} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}+\frac{C_{1}}{C_{3}}\left(B^{2}-\mu A\right)-\frac{2 \pi A B E a b}{C_{2}^{2} C_{3}}\left(b^{2}+\mu a^{2}\right) \sin \frac{\pi x}{a}+\frac{2 \mu \pi A B E a b\left(a^{2}+\mu b^{2}\right)}{C_{2}^{2} C_{3}} \sin \frac{\pi y}{b}\right] $ (36)

结合式(1)~式(3),可得第i层格栅的拉力为

$ T_{\mathrm{g} i}=\frac{2\left[h_{1}-(n-i) \mathit{\Delta} h\right]}{2 n h_{1}-n(n-1) \mathit{\Delta} h} T_{x} $ (37)
4 实例验证
4.1 实例1

某客运专线试验段位于福建,其软土地基采用刚性桩复合地基加固[28],该区段25 m深度范围内,由上向下依次分布有2 m厚粉质粘土,11 m厚淤泥和11 m粉质粘土,路基填土高度为6 m。复合地基桩间距为1.6 m,桩体直径d=0.5 m;桩顶连接边长为1.0 m的正方形桩帽,桩帽上为0.4 m厚加筋垫层,加筋垫层由压缩模量为15.0 MPa的碎石和单层格栅组成;其中,格栅厚度为0.01 m,横纵向实际屈服强度为80.0 kN/m。计算得到加筋垫层抗弯刚度为0.35 MN·m2

利用本文方法及文献[11]方法计算得到桩土应力比及格栅承担最大拉力与实测值对比,如表 1所示。

表 1 理论计算结果与实测值比较 Table 1 Comparison between calculated results and measured results

表 1可知,本文方法计算得到的桩土应力比比实测值稍大,与文献[11]相比,更加接近实测值;文献[11]计算得到的拉力值远大于实测值,本文计算值略小于实测值。本文方法较合理。

4.2 实例2

某列车专线试验区段位于福建,其软土地基采用PTC管桩复合地基进行加固[28]。该区段32 m深度范围内,由上向下依次分布有2 m厚粉质粘土,8 m厚淤泥和22 m粉质粘土,路基填土高度为5.6 m。复合地基采用正方形布桩,桩间距为2.5 m,桩体直径d=0.5 m;桩顶连接边长为1.6 m的正方形桩帽,桩帽上为0.4 m厚加筋垫层,加筋垫层由压缩模量为15.0 MPa的碎石和双层格栅组成;其中,格栅厚度为0.01 m,横纵向实际屈服强度为80.0 kN/m。计算得到加筋垫层抗弯刚度为0.39 MN·m2

利用本文方法及文献[11]方法计算得到桩土应力比及格栅承担最大拉力与实测值对比,如表 2所示。

表 2 理论计算结果与实测值比较 Table 2 Comparison between calculated result and measured result

表 2可知,本文方法计算结果比文献[28]计算值更接近实测值。综合两个实例验证可知,将加筋垫层视为大挠度薄板,考虑格栅层数和位置对桩土应力比和拉力的影响,计算更符合实际情况,本文计算结果与实测值更接近,计算方法较合理。

5 影响因素分析

为了研究加筋垫层中各变量对桩土应力比及格栅拉力的影响,改变土工格栅铺设层数、铺设间隔和底层格栅位置等参数,并固定其他参数不变,研究各因素对桩土应力比及格栅拉力的影响。

由于实际工程中对桩土应力比及格栅承担的最大拉力比较重视,故本文仅对桩土应力比、加筋垫层任意截面x方向所有格栅拉力之和Tx的最大值Tx, sum及该横截面中单层格栅拉力Tgi的最大值Tgi, max进行分析。其中,Tx, sum可按式(35)计算后对比得到;Tgi, max可按式(37)计算后对比得到。

5.1 土工格栅层数

格栅竖向铺设间隔均为0.1 m,底层格栅与桩帽上顶面距离为零。不同格栅加筋层数对应的桩土应力比如图 4所示。

图 4 桩土应力比与土工格栅层数关系曲线 Fig. 4 Relationship between pile-soil stress ratio and total number of geogrids layers

图 4可知,随着加筋层数的增加,对应的桩土应力大幅度增大。铺设1层格栅时,桩土应力比增长至13,较多的填土荷载通过格栅传递给桩体承担;铺设2层时,桩土应力比与铺设1层时相比,仍有较大幅度增长。但铺设层数超过3层后,该增幅减小。分析其原因为:增加1~2层抗拉材料,可以明显增强垫层整体的抗弯刚度;超过3层后,其抗弯惯性矩变化较小,抗弯性能没有较大增强。

加筋垫层横截面拉力和最大值Tx, sum及该截面单层格栅最大拉力Tgi, max随层数变化如图 5所示。

图 5 Tx, sumTgi, max与土工格栅层数关系曲线 Fig. 5 Relationship between Tx, sum, Tgi, max and total number of geogrids layers

图 5可知,Tx, sumTgi, max均随着格栅层数的增大而降低。铺设1层格栅时,全部拉力由该层格栅承担,此时拉力较大;铺设2层格栅时,Tx, sumTgi, max均有较大幅度降低,但降低后的拉力并非原来的一半。可见,多层格栅中每层格栅承担的拉力并非均匀承担,而是与格栅的位置、间距及桩土应力比等因素有关。当格栅增加至3层后,Tx, sumTgi, max降低幅度降低,其原因为,此时桩土应力比增长较少,通过加筋垫层传递至桩体的荷载增长较少。

5.2 格栅铺设间隔

铺设两层格栅,且底层格栅与桩帽顶面的距离为零,桩土应力比随铺设间隔变化如图 6所示。

图 6 桩土应力比与格栅间隔关系曲线 Fig. 6 Relationship between pile-soil stress ratio and geogrids spacing

图 6可知,随着格栅竖向铺设间隔的增大,桩土应力比逐渐减小。由于底层格栅与桩帽距离为零,增大格栅间隔即减小了加筋垫层的抗弯惯性矩,此时,加筋垫层的抗弯刚度降低,造成桩土应力比减小。

加筋垫层横截面拉力和最大值Tx, sum及该截面格栅最大拉力Tgi, max随格栅间距变化如图 7所示。

图 7 Tx, sumTgi, max与土工格栅间隔关系曲线 Fig. 7 Relationship between Tx, sum, Tgi, max and geogrids spacing

图 7可知,随着格栅间隔的增大,总拉力Tx, sum和第2层格栅最大拉力Tg2, max增大,但第1层格栅拉力Tg1, max降低。其原因为,由于格栅铺设间隔的增大,降低了桩土应力比,故桩间土承担的荷载增大,此时,加筋垫层的挠度增大,造成格栅拉力增大;由于第2层格栅位置不变,间距的增大使得第1层格栅靠近中性面,故应变逐渐减小,进而拉力降低。

5.3 底层格栅位置hx

铺设两层土工格栅,且两层格栅竖向间距为0.1 m,改变第2层格栅距桩帽上表面的距离hx,桩土应力比计算结果如图 8所示。

图 8 桩土应力比与hx关系曲线 Fig. 8 Relationship between pile-soil stress ratio and hx

图 8可知,随着hx变大,桩土应力比降低。格栅和桩帽的距离变大,意味着格栅与中性面的距离变小,从而惯性矩变小,造成加筋垫层的抗弯刚度减小,传递给刚性桩的荷载减小,桩土应力比降低。

加筋垫层横截面拉力和最大值Tx, sum及该横截面每层格栅最大拉力Tgi, maxhx变化如图 9所示。

图 9 Tx, sumTgi, maxhx关系曲线 Fig. 9 Relationship between Tx, sum, Tgi, max and hx

图 9可知,随着底层格栅远离桩帽,Tx, sum和第2层格栅的拉力Tg2, max逐渐增大,但第1层格栅的拉力Tg1, max先增大,当hx大于0.25 m后,该层格栅拉力降低,此时,总拉力的增长幅度也随之降低。桩土应力比随hx增大而降低,此时,桩间土承担的荷载增大,造成加筋垫层挠度变大,进而Tx, sum增大。当hx大于一定值后,由于格栅间隔和垫层厚度为定值,造成第1层格栅距中性轴的距离较近,此时,第1层格栅的拉应变较小,其拉力降低。

6 结论

以设置有多层加筋垫层的刚性桩网复合地基为研究对象,运用层合板理论分析格栅与碎石的相互作用,基于大挠度薄板理论,对加筋垫层挠度方程进行求解。在此基础上,推导出刚性桩网复合地基桩土应力比及格栅拉力的计算方法。运用现场试验对提出的方法进行了验证,并综合分析了格栅总层数、铺设间隔和位置等因素对桩土应力比及格栅拉力的影响。主要结论如下:

1) 基于层合板理论,对加筋垫层中多层格栅与碎石之间的相互作用进行了模拟,推导了其抗弯刚度矩阵计算方法。

2) 建立了设置有多层加筋垫层的刚性桩复合地基的桩土应力比和格栅拉力的计算方法,并运用现场试验对计算方法进行了验证,计算结果与实测结果较为吻合。

3) 随着格栅层数的增加,桩土应力比增大而格栅拉力减小,铺设2~3层格栅对提高桩土应力比并降低格栅拉力的效率最高;随着铺设格栅间隔和底层格栅距桩帽距离的增大,桩土应力比降低而格栅总拉力和单层格栅承担的最大拉力增大。

参考文献
[1]
SUN L, ZHENG J J, ZHANG J, et al. Mechanical performance of geosynthetic-reinforced pile-supported embankments[J]. Advanced Materials Research, 2010, 156/157: 1696-1701. DOI:10.4028/www.scientific.net/AMR.156-157
[2]
LU W H, MIAO L C. A simplified 2-D evaluation method of the arching effect for geosynthetic-reinforced and pile-supported embankments[J]. Computers and Geotechnics, 2015, 65: 97-103. DOI:10.1016/j.compgeo.2014.11.014
[3]
钱劲松, 白墨, 罗鑫, 等. 桩承式加筋路堤桩体荷载分担比计算[J]. 岩石力学与工程学报, 2017, 36(6): 3587-3595.
QIAN J S, BAI M, LUO X, et al. , Pile efficacy calculation of geosynthetics reinforced pile supported embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup): 3587-3595.
[4]
闫澍旺, 郎瑞卿, 孙立强, 等. 基于薄板理论的刚性桩网复合地基桩土应力比计算[J]. 岩石力学与工程学报, 2017, 36(8): 2051-2060.
YAN S W, LANG R Q, SUN L Q, et al. , Calculation of pile-soil stress ratio in composite foundation with rigid pile-net based on plate theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2051-2060.
[5]
ARIYARATHNE P, LIYANAPATHIRANA D S, LEO C J. Comparison of different two-dimensional idealizations for a geosynthetic-reinforced pile-supported embankment[J]. International Journal of Geomechanics, 2013, 13(6): 754-768. DOI:10.1061/(ASCE)GM.1943-5622.0000266
[6]
ROWE R K, LIU K W. Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment[J]. Canadian Geotechnical Journal, 2015, 52(12): 2041-2054. DOI:10.1139/cgj-2014-0506
[7]
曹文昭, 郑俊杰, 严勇. 桩承式变刚度加筋垫层复合地基数值模拟[J]. 岩土工程学报, 2017(Sup2): 83-86.
CAO W Z, ZHENG J J, YAN Y. Numerical simulation of composite foundation using pile-supported and geosynthetics-reinforced cushion with variable stiffness[J]. Chinese Journal of Geotechnical Engineering, 2017(Sup2): 83-86.
[8]
XING H F, ZHANG Z, LIU H B, et al. Large-scale tests of pile-supported earth platform with and without geogrid[J]. Geotextiles and Geomembranes, 2014, 42(6): 586-598. DOI:10.1016/j.geotexmem.2014.10.005
[9]
CAO W Z, ZHENG J J, ZHANG J, et al. Field test of a geogrid-reinforced and floating pile-supported embankment[J]. Geosynthetics International, 2016, 23(5): 348-361. DOI:10.1680/jgein.16.00002
[10]
ARIYARATHNE P, LIYANAPATHIRANA D S, LEO C J. Effect of geosynthetic creep on reinforced pile-supported embankment systems[J]. Geosynthetics International, 2013, 20(6): 421-435. DOI:10.1680/gein.13.00029
[11]
British Standards Institution. Code of practice for strengthened reinforced soils and other fills: BS8006[S]. London, UK, 1995.
[12]
FUR D G. Recommendations for Design and Analysis of Earth Structures using Geosynthetic Reinforcements-EBGEO, Second Edition[M]. Ernst & Sohn, 2011.
[13]
Nordic Handbook. Reinforced soils and fill[M]. Stockholm: Nordic Geotechnical Society, 2002.
[14]
The design and construction handbook of mixing piled foundation (machine mixing)[M]. Tokyo: Railway Technology Research Institute, 2001.
[15]
VAN EEKELEN S J M, BEZUIJEN A, VAN TOL A F. Analysis and modification of the British Standard BS8006 for the design of piled embankments[J]. eotextiles and Geomembranes, 2011, 29(3): 345-359. DOI:10.1016/j.geotexmem.2011.02.001
[16]
BLANC M, THOREL L, GIROUT R, et al. Geosynthetic reinforcement of a granular load transfer platform above rigid inclusions:comparison between centrifuge testing and analytical modeling[J]. Geosynthetics International, 2014, 21(1): 37-52. DOI:10.1680/gein.13.00033
[17]
魏平, 魏静, 杨松林, 等. 动载作用下桩网结构低路基双层土工格栅力学特性[J]. 铁道工程学报, 2017, 34(7): 30-35.
WEI P, WEI J, YANG S L, et al. Research on the mechanical characteristics of double-deck geogrids of pile net structure of low embankment under dynamic load[J]. Journal of Railway Engineering Society, 2017, 34(7): 30-35.
[18]
HALVORDSON K A, PLAUT R H, FILZ G M. Analysis of geosynthetic reinforcement in pile-supported embankments. Part Ⅱ:3D cable-net model[J]. Geosynthetics International, 2010, 17(2): 68-76. DOI:10.1680/gein.2010.17.2.68
[19]
PLAUT R H, FILZ G M. Analysis of geosynthetic reinforcement in pile-supported embankments. Part Ⅲ:Axisymmetric model[J]. Geosynthetics International, 2010, 17(2): 77-85. DOI:10.1680/gein.2010.17.2.77
[20]
徐超, 林潇, 沈盼盼. 桩承式加筋路堤张力膜效应模型试验研究[J]. 岩土力学, 2016, 37(7): 1825-1831.
XU C, LIN X, SHEN P P. Model tests of tensile membrane effect of geosynthetic-reinforced piled embankments[J]. Rock and Soil Mechanics, 2016, 37(7): 1825-1831.
[21]
陈仁朋, 汪焱卫, 陈金苗. 桩网结构路基格栅加筋作用及其拉力特性研究[J]. 西南交通大学学报, 2016, 51(6): 1080-1086.
CHEN R P, WANG Y W, CHEN J M. Reinforcing mechanism and tension behaviors of geogrid in pile-supported reinforced embankment[J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1080-1086. DOI:10.3969/j.issn.0258-2724.2016.06.006
[22]
郑俊杰, 曹文昭, 周燕君, 等. 三向土工格栅筋土界面特性拉拔试验研究[J]. 岩土力学, 2017, 38(2): 317-324.
ZHENG J J, CAO W Z, ZHOU Y J, et al. Pull-out test study of interface behavior between triaxial geogrid and soil[J]. Rock and Soil Mechanics, 2017, 38(2): 317-324.
[23]
杨明辉, 邓岳保, 赵明华. 基于叠梁试验的土工格室垫层刚度确定方法研究[J]. 土木工程学报, 2011, 44(11): 87-92.
YANG M H, DENG Y B, ZHAO M H. Study of stiffness test method of geocell cushion based on superposed beam theory[J]. China Civil Engineering Journal, 2011, 44(11): 87-92.
[24]
TAN H M, GAO Z B, HUANG Y L. Calculation method of pile-supported geogrid-reinforced embankment based on elastic large deflection theory[C]//International Conference on Electric Technology and Civil Engineering, IEEE, 2011: 2974-2978. https://www.researchgate.net/publication/252002127_Calculation_method_of_pile-supported_geogrid-reinforced_embankment_based_on_elastic_large_deflection_theory
[25]
ZHANG J, ZHENG J J, MA Q. Mechanical analysis of fixed geosynthetic technique of GRPS embankment[J]. Journal of Central South University, 2013, 20(5): 1368-1375. DOI:10.1007/s11771-013-1624-6
[26]
ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55(1): 17-34. DOI:10.1016/j.sandf.2014.12.002
[27]
FROIO D, RIZZI E. Analytical solution for the elastic bending of beams lying on a variable Winkler support[J]. Acta Mechanica, 2016, 227(4): 1157-1179. DOI:10.1007/s00707-015-1508-y
[28]
蔡德钩.加筋网垫在桩网结构路基中的计算方法研究[D].北京: 中国铁道科学研究院, 2011.
CAI D G. Calculating method of reinforced bedding in the geosynthetics reinforced and pile supported embankment[D]. Beijing: China Academy of Railway Sciences, 2011. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-83801-1012566661.htm