震灾网络舆情风险监测指标及其评估方法
作者:
中图分类号:

D632.5;O233

基金项目:

国家自然科学基金项目"多源风险下基于期权契约的供应链优化模型研究"(71702156)


Risk monitoring indexes and assessment method of network public opinion of earthquake disaster
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为科学构建震灾网络舆情风险评估体系,在舆情监测指标构建基础上提出基于加速遗传算法的BP神经网络(AGABP)风险评估方法。依据网络舆情演化理论,围绕震灾网络舆情的物理属性和社会属性提出2个维度、4个二级指标和10个三级指标的震灾网络舆情风险监测指标体系。在评估方法上,针对常规评估系统对非线性、高维度和非正态评估问题的局限性,利用BP网络能够以任意均方差的精度逼近任意平方可积非线性连续函数的优势,将BP网络用于震灾网络舆情风险监测评估中,并用加速遗传算法(AGA)对BP网络参数进行优化,以解决常规BP网络存在训练速度慢和容易过早收敛的问题。通过随机样本数据对AGABP模型进行自学习训练,并用实际样本数据验证,结果表明:与BP神经网络、逻辑斯蒂曲线相比,本研究所构建的AGABP模型在收敛速度、评估准确度上有明显优势,能够用于震灾网络舆情风险管理实践中。

    Abstract:

    To construct the public opinion risk assessment system for earthquake disaster network, the paper puts forward the risk assessment method of the public opinion of Accelerating Genetic Algorithm BP neural network (AGABP) for earthquake disaster after the public opinion monitoring index is built. According to the evolution theory of network public opinion, the paper focuses on the physical and social attributes of the earthquake disaster network public opinion, and puts forward earthquake disaster Internet public opinion risk monitoring indexes of 2 dimensions, 4 indexes of second-level and 10 indexes of third-level. According to the disadvantage of the conventional evaluation system for nonlinear, high dimension and non-normal evaluation problem, this paper makes use of the advantage of BP network, which can approximate any nonlinear continuous function with arbitrary precision. The paper uses BP network for evaluating the risk of earthquake disaster network public opinion, and also uses Accelerating Genetic Algorithm (AGA) improving the shortcoming of BP to solve the problem of slow training and premature convergence in conventional BP networks. The paper uses random sample data to carry out self-learning training for AGABP model and verifies it with actual sample data. The research results show that:AGABP model has obvious advantages in convergence speed and accuracy to compare with BP neural network and logistics curve, and can be applied to risk management practice of earthquake network public opinion.

    参考文献
    [1] 王慧军,石岩,胡明礼,等.舆情热度的最优监控问题研究[J].情报杂志,2012,31(1):71-75.
    [2] 柳虹,徐金华.网络舆情热点发现研究[J].科技通报,2011,27(3):421-425.
    [3] 方倩,陆伟.微信公众号信息传播热度的影响因素实证研究[J].情报杂志,2016,35(2):157-162.
    [4] 焦超,刘功申.网络突发热点事件的热度分布[J].通信技术,2012,4(4):58-60.
    [5] 翟晓芳,刘全明,程耀东,等.基于转发层次分析的新浪微博热度评估研究[J].计算机工程,2015,41(7):31-35.
    [6] 曹学艳,张仙,刘樑,等.基于应对等级的突发事件网络舆情热度分析[J].中国管理科学,2014,22(3):82-89.
    [7] 张一文,齐佳音,方滨兴,等.非常规突发事件网络舆情热度指标评估体系构建[J].情报杂志,2010,29(11):71-75.
    [8] 魏德志,陈福集,林丽娜.一种基于时间序列的热点话题发现模型和算法[J].情报科学,2017,35(10):142-146.
    [9] FU X H,LI J Q,YANG K,et al.Dynamic Online HDP model for discovering evolutionary topics from Chinese social texts[J].Neuroncomputing,2016,171(1):412-424.
    [10] KHAN K,BAHARUDIN B,KHAN A,et al.Mining opinion components from unstructured reviews:A review[J].Journal of King Saud University-Computer and Information Sciences,2014, 26(3):258-275.
    [11] HUANG S H,LIU Y,DANG D P.Burst topic discovery and trend tracing based on Storm[J].Physical A:Statistical Mechanics and its Applications,2014,416(15):331-339.
    [12] MA B J, ZHANG N,LIU G N,et al.Semantic search for public opinions on urban affairs:A probabilistic topic modeling-based approach[J].Information Processing & Management,2016, 52(3):430-445.
    [13] 王治莹,李勇健.政府干预下突发事件舆情传播规律与控制决策[J].管理科学学报,2017,20(2):43-52.
    [14] HUO L A,HUANG P Q,FANG X.Interplay model for authorities' media and rumor spreading in emergency event[J].Physical A:Statistical Mechanics and its Applications,2011,390(20):3267-3274.
    [15] LEBENSZTAYN E,RODRIGUEZ P M.A connection between a system of random walks and rumor transmission[J].Physical A:Statistical Mechanics and its Applications,2013,392(23):5793-5800.
    [16] ZHAO L J,WANG Q,CHENG J J,et al.The impact of authorities' media and rumor dissemination on the evolution of emergency[J].Physical A:Statistical Mechanics and its Applications,2012,391(15):3978-3987.
    [17] 齐佳音,刘慧丽, 张一文.突发公共危机事件网络舆情耦合机制研究[J].情报科学,2017,35(9):102-108.
    [18] 康伟.突发事件舆情传播的社会网络结构测度与分析——基于"11.16"校车事故的实证研究[J].中国软科学,2012, 7(7):169-178.
    [19] 张玉亮.基于发生周期的突发事件网络舆情风险评估指标体系[J].情报科学,2012,30(7):1034-1037.
    [20] 路枝芳,薛耀文.基于因子聚类分析的舆情风险研究[J].情报科学,2016,34(7):76-80.
    [21] 蒋金才,季新菊,刘良,等.河南省1950~1990年水旱灾害分析[J].灾害学,1996(4):69-73.
    [22] 王硕,张礼兵,金菊良.系统预测与综合评价方法[M].合肥:合肥工业大学出版社,2006:186-191.
    [23] 王思艳.自适应遗传算法的研究[D].保定:华北电力大学,2009.
    引证文献
引用本文

张宇,傅敏,罗加蓉.震灾网络舆情风险监测指标及其评估方法[J].重庆大学学报社会科学版,2018,24(6):33-44. DOI:10.11835/j. issn.1008-5831.2018.06.004

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 最后修改日期:2018-06-12
  • 在线发布日期: 2018-10-25
文章二维码