AI智能层级与仿人实现的价值调控与治理研究
作者:
中图分类号:

C91;C93;G641

基金项目:

国家社会科学基金项目"AI时代中国公民道德选择能力定性与定量研究"(21BKS165)


Artificial intelligence level and value regulation and governance of human-imitation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [19]
  • | | |
  • 文章评论
    摘要:

    人工智能(AI)是人们在致力于如何仿人和仿人哪些功能的过程中不断深度创新、探索的动态性和先进性器物。其智能层级水平基本上以仿人的维度、深度和效度来核定或计量;它的仿人价值调控及其社会治理是以技术价值、社会价值、伦理价值等研究成果的"人文+科技"方式逐渐实现的。正如麦克尤恩指出,人类有历史以来,无论处于什么样的文化背景,人们始终有一个共同的梦,那就是非生殖性地创造出"人造版的我们",使得我们也像上帝造人一样做一回上帝,即造出多功能的人造人。从以人为本的发展观来看,AI的演进发展史是人类以人这个"种类"为本,不断创新模仿人自身的体力、智力、"体力+智力+",以在更高水平和更深层次上智造"人",进而实现进一步解放人自身的实践探索历史。AI在整个演进过程中,能够同时在一定维度和深度上反映AI智能层级形成与演进的过程及运行范式便是"仿人";同时,AI仿人原则和仿人价值实现调控的技术价值、社会价值、伦理价值等工程知识在此过程中得到了逐渐的积累和完善。一方面,AI由机械力学技术向着信息化智能化技术发展,使得单一解放体力劳动向着全面服务人类自由解放发展,一定意义上让AI获得了理论积淀、技术积累和初具规模的工程范式;另一方面,AI较为普遍的深度融合应用引起了人们对自身未来社会活动的隐忧,掀起了以其仿人的智力强弱层级来反映智能层级的价值调控与治理研究热潮,如兴起了人工智能技术价值、社会价值、伦理价值等研究。正因如此,梳理AI演进发展历程及其价值调控与治理规律,特别是厘清各历程中仿人原则的价值标准、价值调控措施及价值调控质效等治理要素,并从每一种特定智能层级出发,用仿人原则的价值调控与治理知识保障其正面效应得以可持续发展,负面效应得到有效消解和遮蔽,有益助推AI在向上向善的价值调控与治理下实现全面深度的智能融合应用,实现AI更广泛和可持续的深度智能融合应用,实现AI在未来社会中只是人的社会活动的得力助手且是向上向善的线上线下24小时助力人类社会活动的道德选择之劳动者。

    Abstract:

    Artificial intelligence is such a dynamic and advanced tool as people are committed to continuous innovation and in-depth innovation exploration on the development path of how to imitate humans and which functions to imitate humans. Its level of intelligence is basically verified or measured by the dimension, depth, and validity of imitation; its imitation value regulation and social governance is gradually realized in the "humanities + technology" way of technological value, social value, moral and ethical value and other research results. As McEwan pointed out, since human history, no matter what cultural background they are in, people have always had a common dream, that is, to create an "artificial version of ourselves" non-reproductively, so that we can act like a God and create human beings as God did, that is, to create multifunctional artificial men. It can be seen from the perspective of people-oriented development that, the evolution and development history of AI is based on the "type" of human beings, constantly innovating and imitating people’s physical strength, intelligence, and "physical strength + intelligence" to achieve higher and deeper levels, and "human beings" are made intelligently to achieve the practical exploration of history that further liberates human beings. AI in the entire evolution process can reflect the formation and evolution of AI intelligence levels in a certain dimension and depth at the same time, and the operating paradigm is "human imitation". At the same time, engineering knowledge such as the technical value, social value, and moral and ethical value of AI imitation principles and imitation values regulation has been gradually accumulated and improved in this process. On the one hand, the development of AI from mechanical mechanics technology to informatization and intelligent technology has enabled the development of the single liberation of physical labor towards the full service of human freedom and liberation. In a sense, AI has obtained theoretical accumulation, technical accumulation and a large-scale engineering paradigm. On the other hand, the more common and in-depth applications of AI have caused people to worry about their own future social activities, which set off a wave of value control research that reflects the intelligence level with its imitation of human intelligence, such as the rise of research on technological value, social value, moral and ethical value of artificial intelligence. For this reason, we should sort out the evolution and development of AI and its value regulation laws, especially clarify the value standards, value regulation measures, and value regulation quality and effectiveness of the human imitation principle in each course. Starting from each specific intelligence level, the value control knowledge of the imitation principle should be used to guarantee the sustainable development of its positive effects, and the elimination and shield of the negative effects. It is helpful to promote the comprehensive and in-depth intelligent integration application of AI under the upward and good value regulation, to achieve broader and sustainable deep intelligent integration application of AI, and to realize that AI is only a helpful assistant in human social activities in the future society which is a morally chosen laborer who promotes people’s social activities 24 hours a day, online and offline.

    参考文献
    [1] 约翰·马尔科夫.与机器人共舞:人工智能时代的大未来[M].郭雪,译. 杭州:浙江人民出版社,2015:14.
    [2] 习近平.推动人工智能深度运用[EB/OL].(2020-07-16)[2022-01-09].https://politics.gmw.cn/2020-07/16/content_33999204.htm.
    [3] 中国芯片设计云技术白皮书2.0[EB/OL].(2022-04-21)[2022-04-26].https://new.qq.com/rain/a/20220421A012I200.
    [4] 科技前沿[J].信息技术与信息化,2013(4):5-7.
    [5] MISKIN M Z,CORTESE A J,DORSEY K,et al.Electronically integrated, mass-manufactured, microscopic robots[J]. Nature, 2020,584(7822): 557-561.
    [6] BOUMAN A,NADAN P,ANDERSON M,et al.Design and autonomous stabilization of a ballistically-launched multirotor[C]//2020 IEEE International Conference on Robotics and Automation. May 31-August 31, 2020, Paris, France.IEEE,2020:8511-8517.
    [7] 王海龙, 张昕嫱, 曹茜芮,等.美国《人工智能国家安全委员会中期报告》的重点与启示[J].机器人产业, 2020(3): 23-25.
    [8] 习近平.加强领导做好规划明确任务夯实基础 推动我国新一代人工智能健康发展[N].人民日报,2018-11-01(1).
    [9] AMODEI D,ANUBHAI R,BATTENBERG E,et al.Deep speech 2: End-to-end speech recognition in English and Mandarin[EB/OL].(2015-12-08).https://arxiv.org/abs/1512.02595.
    [10] DENG J,DONG W,SOCHER R,et al.ImageNet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.June 20-25, 2009, Miami, FL, USA. IEEE, 2009: 248-255.
    [11] 余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展, 2013 (9):1799-1804.
    [12] 陈自富.强人工智能和超级智能:技术合理性及其批判[J].科学与管理,2016(5):25-33.
    [13] 尼克·波斯特洛姆.超级智能:路线图、危险性与应对策略[M].张体伟,张玉青,译.北京:中信出版社,2015:143.
    [14] KOHAVI R,PROVOST F.Special issue on applications of machine learning and the knowledge discovery process[J].Glossary of Terms Journal of Machine Learning, 2017,30(1998): 271-274.
    [15] 黄一鸣,雷航,李晓瑜.量子机器学习算法综述[J].计算机学报,2018(1):145-163.
    [16] 习近平:紧密结合"不忘初心、牢记使命"主题教育 推动改革补短板强弱项激活力抓落实——李克强王沪宁韩正出席[N].人民日报,2019-07-25(1).
    [17] 中国信息通信研究院政策与经济研究所.全球人工智能战略与政策观察(2020)[EB/OL].(2020-12-30)[2021-05-13]. https://www.sohu.com/a/441355353_781358.
    [18] 潘建红, 潘军.大数据时代个体数据理性化悖论与消解[J].甘肃社会科学, 2018(2): 45-50.
    [19] DWORK C.Differential privacy:A survey of results[C].Proceedings of International Conference on Theory and Applications of Models of Computation.Springer,2008:1-19.
    [20] 潘军.AI理性价值智能的隐忧与消解[J].自然辩证法通讯,2018(4):20-25.
    [21] 崔鹏.人工智能演进中的伦理悖论与社会危机[J].大数据时代,2017(2):27-33.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘军,姚科敏. AI智能层级与仿人实现的价值调控与治理研究[J].重庆大学学报社会科学版,2022,28(4):251-261. DOI:10.11835/j. issn.1008-5831. zs.2022.06.001

复制
分享
文章指标
  • 点击次数:281
  • 下载次数: 676
  • HTML阅读次数: 875
  • 引用次数: 0
历史
  • 在线发布日期: 2022-09-30
文章二维码