城市体系结构演变、产业动态集聚与空间效率优化协同
作者:
中图分类号:

F061.5

基金项目:

国家社会科学基金重大项目"一带一路区域价值链构建与中国产业转型升级研究"(18ZDA038);国家自然科学基金青年项目"城市群多中心空间发展促进城乡融合的机制与路径研究"(71903083);江苏省社会科学基金青年项目"全球价值链驱动机制变化下的江苏制造业转型升级路径研究"(20GLC014)


Urban system structure evolution, dynamic industrial agglomeration and synergistic spatial efficiency improvement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着城市化水平提升和城市集群化发展,优化城市体系空间结构成为释放我国区域效率潜能的重要动力。经过学术史梳理可以发现,处于不同国家、不同区位的城市体系,其空间结构效率存在明显差异,因此并不能断定究竟单中心还是多中心结构更有利于效率提升。文章认为,脱离产业动态调整过程来静态评价城市体系的空间效率是片面的。原因在于,对于产业净流出的区域,无论何种空间结构,其效率损失的概率更高。因此,文章将企业进入和退出某地区的过程融入产业动态集聚指标构建,同时在对折旧率和资本存量重新测算的基础上对城市生产率进行测算,并采用空间计量模型对影响城市体系空间效率的作用机制进行检验。研究发现,扁平化的多中心结构更有利于地区生产率提升,但需要兼顾产业集聚动态变化的影响,该结果进一步说明忽略企业进入和退出某地区的过程可能导致结果是有偏的,同时缺乏解释力。进一步研究表明,多中心结构使城市规模效率得到显著改善,却不利于技术进步率和技术效率的改进。研究还发现,京津冀和长江中游城市群的多中心特征偏弱,且空间效率尚待进一步优化。相比之下,长三角和珠三角城市群的多中心结构与产业动态集聚形成了良好的协同效应。此外,考虑产业可能在城市体系内部动态调整,从而产生城市间生产率的不均衡分布。研究表明,多中心结构与产业动态集聚有利于城市生产率协同,但同时发现其更有利于大规模城市的效率提升,反而限制了小城市的发展。该结果影射出在多中心结构形成的过程中,大规模城市依然是利益最大攫取者。尽管空间计量模型可以弱化内生效应,但为降低结果偏误,文章参照现有研究分别采用城市地表粗糙度和区域河流密度作为产业集聚和城市体系的工具变量,其结果并未出现根本性变化。文章同时采用调整赫芬达尔指数、变换首位度指数和人均GDP进行稳健性检验,以增强研究结论的可信度。影响机制检验结果表明,产业在各城市集聚的过程加速了多中心城市体系结构的形成,而市场一体化又有效释放了多中心结构的空间效率。因此,应当深化城市体系结构演进与产业动态集聚的耦合协同关系,推进市场一体化以进一步释放效率潜能。同时,在突出中心城市主导地位的同时,更加注重中小城市协调发展,在双循环的发展框架下促进城市体系内部的良性循环。

    Abstract:

    With the improvement of urbanization and the development of urban clusters, optimizing the spatial structure of urban system has become important power in releasing the potential regional efficiency in China. After combing through academic history, it could be found that there are obvious differences in the spatial structure efficiency among urban systems in different countries or locations. Therefore, it is not clear whether single-center or multi-center structure is more conducive to efficiency improvement. However, with continuous spatial structure evolution, it is inaccurate to statically evaluate the efficiency of the urban system structure without the process of dynamic adjustment of industrial firms. The reason lies in that for the area where the industry is net outflow, no matter what the spatial structure, the probability of efficiency loss is higher. This paper innovatively integrates the process of firms’ entry and exit into the construction of urban agglomeration indicator, and measures the urban productivity on the basis of recalculating the depreciation rate and capital stock, so as to use the spatial econometric model to test the theoretical mechanism that affects the spatial efficiency of the urban system. It is found that the multi-center urban system structure is more conducive to the improvement of regional productivity, which needs to be integrated into the process of dynamic industrial agglomeration. This result further shows that ignoring the process of firms’ entry and exit may lead to biased results and lack of explanatory power. Meanwhile, the urban scale efficiency has been significantly improved, while it is not conducive to the improvement of technological progress and technological efficiency. It is also found that the polycentric features of the Beijing-Tianjin-Hebei and the urban agglomeration in the middle reaches of the Yangtze River are weak, which needs spatial efficiency improvement. In contrast, the multi-center structure and industrial agglomeration of the Yangtze River Delta and Pearl River Delta urban agglomerations have performed better synergy effect. In addition, industries may be dynamically adjusted within the urban system, resulting in an uneven distribution of productivity among cities. Further research shows that the polycentric structure and industrial dynamic agglomeration are conducive to the coordination of urban productivity. However, it is also found that it is more conducive to the efficiency improvement of large-scale cities, but restricts the development of small cities, which alludes to the fact that in the process of multi-center structure forming, large-scale cities are still the biggest takers of benefits. Although the spatial measurement model could weaken the endogenous effect, this paper uses urban surface roughness and regional river density as the instrumental variables of industrial agglomeration and urban system structure referring to the existing research, so as to reduce the empirical bias. The result shows no fundamental change. This paper also uses the adjusted Herfindahl-Hirschman Index, the transforming primacy index and the per capita GDP to conduct robustness tests to enhance the credibility of the conclusions. The results of the influence mechanism test show that the process of dynamic industrial agglomeration among cities has accelerated the polycentric urban system, and the process of market integration has effectively released the spatial efficiency of the multi-center city system. Therefore, it is necessary to deepen the coupling and synergy relation between the urban system and the dynamic agglomeration of industries, meanwhile to promote market integration to further release the potential efficiency. At the same time, while highlighting the dominant position of central cities, it also needs to pay more attention to coordinated development of small and medium-sized cities, and to build a virtuous circle system within the urban agglomerations under the framework of dual-circulation development in China.

    参考文献
    [1] 刘修岩.空间效率与区域平衡:对中国省级层面集聚效应的检验[J].世界经济,2014(1):55-80.
    [2] 毛其淋,盛斌.中国制造业企业的进入退出与生产率动态演化[J].经济研究,2013(4):16-29.
    [3] BREZZI M,VENERI P.Assessing polycentric urban systems in the OECD:Country,regional and metropolitan perspectives[J].European Planning Studies,2015,23(6):1128-1145.
    [4] 郝良峰,邱斌.基于同城化与产业同构效应的城市层级体系研究:以长三角城市群为例[J].重庆大学学报(社会科学版),2016(1):22-32.
    [5] 黄妍妮,高波,魏守华.中国城市群空间结构分布与演变特征[J].经济学家,2016(9):50-58.
    [6] GLAESER E L,PONZETTO G A M,ZOU Y M.Urban networks:Connecting markets,people,and ideas[J].Papers in Regional Science,2016,95(1):17-59.
    [7] BAILEY N,TUROK I.Central Scotland as a polycentric urban region:Useful planning concept or chimera?[J].Urban Studies,2001,38(4):697-715.
    [8] VENERI P,BURGALASSI D.Spatial structure and productivity in Italian NUST-3 regions[J].Università Politecnica Delle Marche,Dipartimentio Di Science Economiche E Sociali,2011,364:1-26.
    [9] BURGER M J,VAN DER KNAAP B,WALL R S.Polycentricity and the multiplexity of urban networks[J].European Planning Studies,2014,22(4):816-840.
    [10] 张浩然,衣保中.城市群空间结构特征与经济绩效:来自中国的经验证据[J].经济评论,2012(1):42-47,115.
    [11] 孙斌栋,李琬.城市规模分布的经济绩效:基于中国市域数据的实证研究[J].地理科学,2016(3):328-334.
    [12] ALONSO W.Urban zero population growth[J].Daedalus,1973,102:191-206.
    [13] MEIJERS E J,BURGER M J.Spatial structure and productivity in US metropolitan areas[J].Environment and Planning A:Economy and Space,2010,42(6):1383-1402.
    [14] CAMAGNI R,CAPELLO R,CARAGLIU A.Static vs.dynamic agglomeration economies:Spatial context and structural evolution behind urban growth[J].Papers in Regional Science,2016,95(1):133-158.
    [15] 刘修岩,李松林,陈子扬.多中心空间发展模式与地区收入差距[J].中国工业经济,2017(10):25-43.
    [16] CERVERO R.Efficient urbanisation:Economic performance and the shape of the metropolis[J].Urban Studies,2001,38(10):1651-1671.
    [17] ROSENTHAL S S,STRANGE W C.Geography,industrial organization,and agglomeration[J].Review of Economics and Statistics,2003,85(2):377-393.
    [18] MEIJERS E J,BURGER M J,HOOGERBRUGGE M M.Borrowing size in networks of cities:City size,network connectivity and metropolitan functions in Europe[J].Papers in Regional Science,2016,95(1):181-198.
    [19] 刘修岩,李松林,秦蒙.城市空间结构与地区经济效率:兼论中国城镇化发展道路的模式选择[J].管理世界,2017(1):51-64.
    [20] 姚常成,吴康.多中心空间结构促进了城市群协调发展吗:基于形态与知识多中心视角的再审视[J].经济地理,2020(3):63-74.
    [21] PHELPS N A.Clusters,dispersion and the spaces in between:For an economic geography of the banal[J].Urban Studies,2004,41(5/6):971-989.
    [22] 郝良峰,李小平.城市蔓延对地区生产率增长的影响:基于产业动态集聚的视角[J].中南大学学报(社会科学版),2020(2):21-31.
    [23] DURANTON G,OVERMAN H G.Testing for localization using micro-geographic data[J].The Review of Economic Studies,2005,72(4):1077-1106.
    [24] 王永进,盛丹.地理集聚会促进企业间商业信用吗?[J].管理世界,2013(1):101-114,188.
    [25] 李松林,刘修岩.中国城市体系规模分布扁平化:多维区域验证与经济解释[J].世界经济,2017(11):144-169.
    [26] JIANG B,YIN J J,LIU Q L.Zipf’s law for all the natural cities around the world[J]. International Journal of Geographical Information Science,2015,29(3):498-522.
    [27] 柯善咨,向娟.1996—2009年中国城市固定资本存量估算[J].统计研究,2012(7):19-24.
    [28] 张军,吴桂英,张吉鹏.中国省际物质资本存量估算:1952—2000[J].经济研究,2004(10):35-44.
    [29] 单豪杰.中国资本存量K的再估算:1952—2006年[J].数量经济技术经济研究,2008(10):17-31.
    [30] KUMBHAKAR S C,LOVELL C A K.Stochastic frontier analysis[M].Cambridge:Cambridge University Press,2000.
    [31] LESAGE J P.An introduction to spatial econometrics[J].Revue d’Économie Industrielle,2008(123):19-44.
    [32] 魏守华,陈扬科,陆思桦.城市蔓延、多中心集聚与生产率[J].中国工业经济,2016(8):58-75.
    [33] RAMCHARAN R.Why an economic core: domestic transport costs[J].Journal of Economic Geography,2009,9(4):559-581.
    [34] BOSKER M,BURINGH E.City seeds:Geography and the origins of the European City system[J].Journal of Urban Economics,2017,98:139-157.
    [35] AL-MARHUBI F.Export diversification and growth:An empirical investigation[J].Applied Economics Letters,2000,7(9):559-562.
    [36] FALLAH B N,PARTRIDGE M D,OLFERT M R.Urban sprawl and productivity:Evidence from US metropolitan areas[J].Papers in Regional Science,2011,90(3):451-472.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郝良峰,李小平,李松林.城市体系结构演变、产业动态集聚与空间效率优化协同[J].重庆大学学报社会科学版,2023,29(1):70-87. DOI:10.11835/j. issn.1008-5831. jg.2021.11.002

复制
分享
文章指标
  • 点击次数:528
  • 下载次数: 1042
  • HTML阅读次数: 1071
  • 引用次数: 0
历史
  • 在线发布日期: 2023-02-28
文章二维码