自然评价:人工智能驱动下的学术成果评价模式重构
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18;G311

基金项目:

中国人民大学科学研究基金重大项目"面向自主知识体系建构的学术代表作评价研究"(23XNL018)


Natural evaluation: The reconstruction of the academic Publication evaluation model driven by artificial intelligence
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    学术成果评价作为科研项目评审、人才评价、期刊评价、机构评价等活动的基础,是学术评价体系的重中之重,也是科研管理的关键环节之一。当前,我国学术成果评价模式存在"同行评议黑箱""引文动机模糊""评价数据间接且片面"等弊端,阻碍了学术创新,也与当下建构自主知识体系的战略相悖。而近年来人工智能等技术在数据、算法、算力上的突破性发展,特别是判别式模型和生成式模型在机器翻译、文本分类、文本摘要、情感分析、问答系统等领域日益成熟的应用,为传统学术成果评价模式的革新带来契机,为实现更加科学、多元与智能的学术成果评价提供了充分可能。基于对现有学术成果评价模式不足与人工智能应用契合度的分析,文章提出学术成果评价新模式——自然评价。自然评价模式是人工智能与学术成果评价的深度融合,既是对以往同行评议、文献计量、网络计量、替代计量等传统评价模式的批判性继承与发展,也是一种突破与革新。具体而言,自然评价是基于学术共同体在各种学术活动中自然产生的全量化的学术痕迹大数据,将人工智能技术应用于学术成果知识内容和学术共同体学术痕迹数据的语义理解与自动分析中,从而动态形成评价判断,并服务于知识创新与学术进步的一种评价模式。因其评价过程以自然形成为主、人为干预很少,故而命名为"自然评价"。文章从学理层面探讨了人工智能驱动下自然评价的技术逻辑、价值遵循与未来展望。就技术逻辑而言,自然评价以各类学术活动中的自然产生的痕迹数据为基础,通过算法支撑智能抽取数据中的语义并生成评价判断,通过算力赋能提升评价的精准度和效率。就价值遵循而言,自然评价秉持质量为先、公正为基、全面为要的价值原则,力求突围"数字规训"陷阱,破除"人情主导"桎梏,克服"片面评价"束缚。就未来展望而言,自然评价展现出顺应开放科学时代趋势,优化学术创新生态环境,促进自主知识体系建构的图景。最后,尽管本文已从学理层面系统探讨了人工智能驱动下自然评价的技术逻辑、价值遵循和未来展望,论述了其在理论上可以呈现出更科学的评价结果,但其中更为具体的人工智能技术实现机制、学术共同体评价激励机制、人机关系协调机制、不同主体评价赋权机制等难点,还有待在未来进一步展开研究。

    Abstract:

    As the basis for the evaluation of scientific research projects, talents, journals, and institutions, academic publication evaluation is an important part of the academic evaluation system and a key step in scientific research management. The current academic publication evaluation model has some disadvantages such as "black box of peer review", "ambiguous motivation of citation" and "indirect and one-sided evaluation data", which hinders academic innovation and also runs counter to the current strategy of building an independent knowledge system. The breakthrough development of AI in data, algorithms, and arithmetic power in recent years, especially the increasingly mature application of discriminant and generative models in machine translation, text classification, text summary, dialogue system, etc. has brought a great opportunity for innovation of the traditional academic publication evaluation model and provided a possibility to realize a more scientific, pluralistic, and intelligent academic publication evaluation. From the analysis of the inadequacy of the existing evaluation models and the fit of AI applied to it, the paper proposes a new model of academic publication evaluation, namely Natural Evaluation. Natural Evaluation is an integration of AI and academic publication evaluation, which is both a critical inheritance and a breakthrough of the traditional evaluation models such as peer review, bibliometrics, webometrics, and alternative metrics. Specifically, Natural Evaluation is an evaluation model based on the fully quantified academic trace data naturally generated by the academic community in various scholarly activities, and AI technology is applied to the semantic understanding and automatic analysis of the knowledge content of academic results and academic trace data of the community, to dynamically form evaluation judgments and serve knowledge innovation. The paper discusses the technical logic, value compliance, and prospect of Natural Evaluation driven by AI from the doctrinal level. In terms of technical logic, Natural Evaluation is based on the naturally generated trace data from various scholarly activities, and the algorithm supports the intelligent extraction of semantics in the data and generates evaluation judgments, and enhances the accuracy and efficiency of evaluation through arithmetic power empowerment. In terms of value compliance, Natural Evaluation upholds the value principles of quality first, impartiality, and comprehensiveness, and seeks to break out of the trap of "digital discipline", and break the shackles of "human favor dominance" and "one-sided evaluation". In terms of the future outlook, Nature Evaluation presents a picture of responding to the trend of the open science era, optimizing the ecological environment of academic innovation, and promoting the construction of independent knowledge systems. Finally, although the technical logic, value compliance, and prospect of Natural Evaluation have been systematically discussed from the theoretical level, and it can be theoretically proved to present more scientific evaluation results, the specific difficulties of AI technology implementation, academic community evaluation incentive, human-machine relationship coordination, and evaluation empowerment of different subjects are yet to be further researched in the future.

    参考文献
    相似文献
    引证文献
引用本文

杨红艳,卢思佳,徐拥军.自然评价:人工智能驱动下的学术成果评价模式重构[J].重庆大学学报社会科学版,2023,(4):101-114. DOI:10.11835/j. issn.1008-5831. pj.2023.05.002

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-08
  • 出版日期:
文章二维码