新质生产力视域下中国高校科技创新力评价及影响因素研究
作者:
中图分类号:

G644

基金项目:

山东省重点研发计划(软科学)重点项目"'政产学研金服用’创新创业共同体建设模式研究"(2021RZB03010);山东省教育科学规划重大招标课题"山东省高校创新力评价及其提升策略研究"(2020VZ001)


A study on the evaluation and influence factors of science and technology innovation ability in Chinese universities and colleges from the perspective of new quality productivity forces
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [5]
  • | | |
  • 文章评论
    摘要:

    习近平总书记立足于我国经济发展时代特征提出新质生产力概念,并作出一系列重要论述。新质生产力是在新技术革命推动下,以信息技术、人工智能为引擎,以科技创新为驱动力的生产力形态,是高质量发展的强劲推动力、支撑力。高校作为国家创新体系的重要组成部分,在基础研究、应用研究、成果转化等方面发挥着重要作用,取得了一批重大科技成果,但还存在着诸多不足,面临不少困难和问题。在习近平总书记关于新质生产力重要论述的指引下,准确把握高校科技创新的重要地位和独特优势,客观评价我国不同地区高校科技创新力发展水平,分析存在的问题,提出对策建议,具有极其重要的意义。文章采用TOPSIS法测算我国31省(自治区、直辖市)高校科技创新力指数,基于空间自相关理论探究我国高校科技创新力指数的空间关联特征,运用泰尔指数分析我国高校科技创新力指数的空间差异性,运用地理探测器原理研究我国高校科技创新力的影响因素及其交互作用。研究结果发现:我国31省(自治区、直辖市)高校科技创新力整体还不强,创新力指数的空间分布不均衡,东部地区明显高于中部和西部地区;空间自相关性显著,上海、江苏、广东、浙江等指数较高省份呈现"高-高"集聚特征,甘肃、海南、新疆、西藏等指数较低省份呈现"低-低"集聚特征;区域间差异明显,东部和西部地区域内差异较中部地区显著,东部地区内部差异逐渐缩小,中部地区内部差异先增大后缩小,西部地区内部差异有所增大;影响我国高校科技创新力发展的主要因素是人力资源、经费投入等,且区域间投入存在明显差异,中部和西部地区投入不足,同时还受区域对外开放和技术需求等因素影响;内部因素交互作用强度大于外部因素,交互作用强度较大的是教学与科研人员数、科技经费当年拨入、成果应用及科技服务项目数、R&D成果应用及科技服务项目经费当年拨入、信息化水平,且信息化水平发挥的作用越来越大。根据研究结论,以习近平总书记关于新质生产力重要论述为指引,从创新投入、资源配置、资源共享、政产学研合作等方面提出对策建议。

    Abstract:

    General Secretary Xi Jinping put forward the concept of new quality productive forces based on the characteristics of our economic development era times and made a series of important arguments. New quality productivity forces is a productivity form by the new technological revolution. The engine of new quality productivity forces is the information technology and artificial intelligence, and scientific and technological innovation is its driving force. New quality productivity forces is the strong driving force and supporting force of high-quality development. As an important part of the national innovation system, universities and colleges play a crucial role in fundamental research, applied research and achievement transformation. They have achieved a lot of major scientific and technological achievements. However, there are still many deficiencies and many difficulties and problems. Under the guidance of General Secretary Xi Jinping’s important arguments on "new quality productivity forces", it is of great importance significance to accurately grasp the important position and unique advantages of scientific and technological innovation ability in universities and colleges, and objectively evaluate the development level of scientific and technological innovation of universities and colleges in different regions of our country, and analyze the existing problems, and put forward countermeasures and suggestions. This paper uses TOPSIS method to measure the scientific and technological innovation ability index of universities and colleges in 31 provinces (municipalities and autonomous regions). Based on the spatial autocorrelation theory, this paper explores the spatial correlation characteristics of scientific and technological innovation ability index. Theil index is used to analyze the spatial differences of scientific and technological innovation power index. The geographical detector is utilized to study influencing factors of the science and technology innovation power and the interaction of those factors. The results of the study are that: The overall innovation power of Chinese universities and colleges in 31 provinces (including municipalities and autonomous regions) is not strong. The spatial distribution of science and technology innovation power index is uneven, and and the eastern region is significantly higher than the central and western regions. The spatial auto-correlation is significant. The regions with high index such as Shanghai, Jiangsu, Guangdong and Zhejiang show the "high-high" agglomeration. The regions with low index such as Gansu, Hainan, Xinjiang and Tibet show the "low-low" agglomeration. There are significant regional differences. The internal difference of eastern and western regions is more significant than that of central region. The internal differences in the east are narrowing. The internal differences in the central region first increased and then decreased. The internal differences have increased in the western region. The main factors that affect the development of scientific and technological innovation power of Chinese universities and colleges are human resources, fund investment, etc.. There are obvious differences in resource input between regions. The central and western regions are underinvested. At the same time, the central and western regions also affected by regional opening up to the world and technical needs. The interaction intensity of internal factors is greater than that of external factors. The factors with greater interaction strength are the number of teaching and research staff, the science and technology allocation funds in the current year,the number of technology results application and service projects, the amount of funds allocated for R&D achievements application and scientific and technological service projects in the current year and the informatization level. The informatization level plays an increasingly important role. According to the research conclusion and based on General Secretary Xi Jinping’s new quality productivity forces, this paper puts forward countermeasures and suggestions in innovation investment, resource allocation, resource sharing and government-industry-university-research cooperation, etc..

    参考文献
    [1] 习近平主持召开新时代推动东北全面振兴座谈会强调 牢牢把握东北的重要使命 奋力谱写东北全面振兴新篇章[EB/OL].(2023-09-09).https://www.ccps.gov.cn/xtt/202309/t20230909_159168.shtml.
    [2] 中央经济工作会议在北京举行 习近平出席会议并发表重要讲话[N].光明日报,2023-12-12(01).
    [3] 习近平在中共中央政治局第十一次集体学习时强调 加快发展新质生产力 扎实推进高质量发展[N].光明日报,2024-02-01(01).
    [4] 李强.政府工作报告——2024年3月5日在第十四届全国人民代表大会第二次会议上[EB/OL].(2024-03-12).https://www.gov.cn/yaowen/liebiao/202403/content_6939153.htm.
    [5] 姜朝晖,金紫薇.教育赋能新质生产力:理论逻辑与实践路径[J].重庆高教研究,2024(1):108-117.
    [6] 张林,蒲清平.新质生产力的内涵特征、理论创新与价值意蕴[J].重庆大学学报(社会科学版),2023(6):137-148.
    [7] 姚树洁,张小倩.新质生产力的时代内涵、战略价值与实现路径[J].重庆大学学报(社会科学版),2024(1):112-128.
    [8] 蒲清平,黄媛媛.习近平总书记关于新质生产力重要论述的生成逻辑、理论创新与时代价值[J].西南大学学报(社会科学版),2023(6):1-11.
    [9] GARNATJE T,VALLÈS J. Does aggressiveness in evaluation improve the quality of scientific research?[J].Journal of the American Society for Information Science and Technology,2013,64(8):1756.
    [10] WANG D H,XIN Y.Research on the evaluation of knowledge innovation ability of enterprise based on knowledge management[J].Journal of Convergence Information Technology,2013,9(8):1163-1169.
    [11] 苏荟,刘奥运."双一流" 建设背景下我国省际高校科研效率及影响因素研究:基于DEA-Tobit模型[J].重庆大学学报(社会科学版),2020(1):107-118.
    [12] 王辉,陈敏.基于两阶段DEA模型的高校科技创新对区域创新绩效影响[J].经济地理,2020(8):27-35,42.
    [13] 陈国福,蒋清泉,唐炎钊.中国特色世界一流大学建设背景下高校科技创新能力评价研究[J].科技进步与对策,2022(24):109-118.
    [14] 曾繁华,黄海.高校创新产出及其驱动因子的空间分异:基于ESDA—GWR的实证[J].科技管理研究,2021(7):86-94.
    [15] 王冲,刘鹏飞,孙磊.高校科技创新能力评价指标体系构建与实证分析:以吉林省为例[J].统计与决策,2023(24):84-88.
    [16] 王晓红,张少鹏,张奔.产学合作对高校创新绩效的空间计量研究:基于组织层次和省域跨层次的双重视角[J].经济与管理评论,2021(1):125-137.
    [17] 朱恬恬,卢雅华,张跃军.非期望产出对"双一流"建设高校科技创新效率的影响研究[J].高校教育管理,2022(4):31-40.
    [18] 查道林,陈思,杨茜."双一流"建设高校科研效率及影响因素实证研究:基于超效率SBM-Malmquist-Tobit模型[J].教育与经济,2022(3):9-16.
    [19] 李国才,曾刚.科技自立自强视域下高校科技创新效率测度及颁布特征[J].科技管理研究,2023(21):1-10.
    [20] DUAN S X. Measuring university efficiency an application of data envelopment analysis and strategic group analysis to Australian universities[J]. Benchmarking: an international journal,2019,26(4):1161-1173.
    [21] THURSBY J G, THURSBY M C. Who is selling the Ivory tower?sources of growth in university licensing[J]. Management Science, 2002, 48(1): 90-104.
    [22] Martín y Ma José Rodríguez Conde Santiago Nieto. Results convergence in two designs research-innovation in university teaching through the TIC[J]. Revista Espanola De Pedagogia, 2007, 65(236):27-48.
    [23] HAUSMAN N. University innovation and local economicgrowth[J]. The Review of Economics and Statistics, 2022, 104(4): 718-735.
    [24] AGASISTI T, BELFIELD C. Efficiency in the community college sector: stochastic frontieranalysis[J]. Tertiary Education and Management, 2017, 23(3): 237-259.
    [25] 王建梁,刘天雨.澳大利亚推进高校科研成果转化新举措探析[J].中国高校科技,2023(6):52-58.
    [26] BIKARD M, VAKILI K, TEODORIDIS F. When collaboration bridges institutions: the impact of university-industry collaboration on academicproductivity[J]. Organization Science, 2019, 30(2): 426-445.
    [27] 张奔,王宏起,王晓红.校企合作氛围对高校科研人员科研绩效的影响:技术能力的中介作用[J].系统管理学报,2022(5):954-963.
    [28] 章熙春,朱绍棠,李胜会.创新政策与科研结构双重影响下高校科技创新绩效研究[J].科技进步与对策,2022(18):1-9.
    [29] DI F. Empirical research on the influencing factors of the conversion efficiency of scientific and technological achievements in colleges and universities based on Tobit model[J]. Educational Sciences Theory & Practice,2018(1806):2794-2807.
    [30] LEE Y H. Determinants of research productivity in Korean Universities: the role of researchfunding[J].The Journal of Technology Transfer, 2021, 46(5): 1462-1486.
    [31] 蔡文伯,赵志强.我国十大城市群高校科研效率及影响因素研究:基于DEA-Malmquist-Tobit模型[J].重庆高教研究,2021(4):30-42.
    [32] FRENKEN K, HEIMERIKS G J, HOEKMAN J. What drives university research performance? An analysis using the CWTS Leiden Rankingdata[J]. Journal of Informetrics, 2017, 11(3): 859-872.
    [33] 吴宏超,马聪颖."一带一路"沿线省份高校科技创新效率及影响因素:基于DEA-Malmquist-Tobit模型的研究[J].重庆高教研究,2020(6):34-47.
    [34] BIKARD M,VAKILI K,TEODORIDIS F.When collaboration bridges institutions:the impact of university-industry collaboration on academicproductivity[J].Organization Science,2019,30(2):426-445.
    [35] SALAS-VELASCO M.Measuring and explaining the production efficiency of Spanish universities using a non-parametric approach and a bootstrapped-truncatedregression[J]. Scientometrics, 2020, 122(2): 825-846.
    [36] 刘钥,高嘉诚.数字建设与高校科技创新效率协调发展分析[J].科技管理研究,2024(1):67-76.
    [37] 何声升.高校科技创新绩效影响因素分位研究:创新价值链理论视角[J].高校教育管理,2020(5):104-114.
    [38] 马聪颖,吴宏超.一流大学建设高校科技创新效率:差距、影响因素与提升路径[J].高教探索,2021(2):53-61.
    [39] 王海燕,苏博谦.高校科技创新与区域经济耦合协调及影响因素研究:基于2013—2019年我国30省份相关数据[J].中国高校科技,2023(6):37-43.
    [40] 汪凡,白永平,周亮,等.中国高校科技创新能力时空格局及影响因素[J].经济地理,2017,37(12):49-56.
    [41] 刘业进,崔佳慧.高校科技创新与经济高质量发展:基于空间杜宾模型的实证研究[J].演化与创新经济学评论,2023(2):74-91.
    [42] 谢忠局,马亚东,杨正东.中国高校科技创新对区域经济发展的影响效应研究:基于空间溢出效应视角的分析[J].价格理论与实践,2021(4):165-168.
    [43] 山述兰,边慧敏.服务国家科技自立自强:高校的使命担当与路径选[J].理论与改革,2023(3):13-23.
    [44] 熊玲玲.我国高校科技创新能力动态综合评价[D].南昌:南昌大学,2018.
    [45] 张菊."双一流"建设高校科技创新对区域经济发展的影响研究:以国家中心城市为例[D].武汉:华中农业大学,2023.
    [46] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017(1):116-134.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李平,孙晓敬,曹明平.新质生产力视域下中国高校科技创新力评价及影响因素研究[J].重庆大学学报社会科学版,2024,30(3):161-179. DOI:10.11835/j. issn.1008-5831. pj.2024.04.017

复制
分享
文章指标
  • 点击次数:520
  • 下载次数: 603
  • HTML阅读次数: 386
  • 引用次数: 0
历史
  • 在线发布日期: 2024-07-07
文章二维码