人工智能产品算法设计者的犯罪过失判断——以危惧感说的核心观点为立场
作者:
中图分类号:

D914;TP18

基金项目:

国家社会科学基金重大项目"智能技术赋能政法领域全面深化改革研究"(22ZDA074)


The criminal negligence of the designer of artificial intelligence products: Taking a stand on the central perspective of the sense of fearing theory
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [2]
  • | | |
  • 文章评论
    摘要:

    判断人工智能产品算法设计者的过失时,修正的旧过失论对导致危害结果发生的因果历程设置了具体预见可能性标准,这一标准与算法的黑箱属性以相关性而不是因果关系为基础的决策过程存在冲突。同时,此立场只重视结果忽视行为的逻辑会打击算法设计者的积极性,阻碍算法进步。新过失论虽然以结果避免义务作为犯罪过失的核心,但是其对结果预见可能性的标准缺乏具体设计,在判断预见可能性时往往束手无策。因此,两种立场都不是判断人工智能产品算法设计者犯罪过失的合理方案。相比之下,虽然危惧感说(超新过失论)认为结果预见可能性只需达到危惧感的观点受到了主流观点的批评,但这种批评值得商榷:其一,只看到了这种立场对结果预见可能性的低程度要求,却没有看到这种要求背后的核心观点对于判断犯罪过失的合理性;其二,将危惧感说提出者本人对个别案件的过失判断等同于危惧感说的全部,略显片面。与修正的旧过失论和新过失论相比,危惧感说的核心观点是:结果预见可能性与结果避免义务存在相互关联性,这是判断人工智能产品算法设计者犯罪过失的合理方案。以危惧感说的核心观点为思路,犯罪过失包括客观的结果预见可能性、客观的结果预见义务和客观的结果避免义务。人工智能产品算法设计者客观的结果预见可能性的标准是:一旦遭遇包含异常因素的特殊情况,算法有可能做出不利决策,进而引发消极后果。算法设计者客观的结果预见义务的内容是:其一,应当预见到其设计的算法不仅会被用于没有异常因素出现的正常情况,而且可能被用于伴随异常因素出现的特殊情况;其二,一旦其设计的算法面临特殊情况,该系统可能会做出不利决策。算法设计者客观的结果避免义务的内容是:应当避免在设计算法时植入为社会公众普遍反对或不赞同的价值理念;在设计时检验"投喂"给算法系统的数据质量,最大程度防止缺陷数据进入算法机器学习训练的"垃圾进"风险;及时告知产品生产者算法可能面对的异常情况。

    Abstract:

    When judging the negligence of the designer of artificial intelligence product algorithm, the opinion of modified theory of old negligence is in conflict withthe nature of black box of algorithm that depends on correlation rather than causationwhen making decisions; the logic of this standpoint that only valuing results while ignoringconductmay blow algorithm designers’ enthusiasm, impeding algorithm’s progressing; Although the new negligence theory takes the obligation of result avoidance as the core standard of criminal negligence, it lacks specific design of the standard of possibility of foreseeing and is often at a loss when judging the possibility of foreseeing. Therefore, both standpoints are not reasonable schemes to judge the criminal negligence of intelligent products algorithm designers. In contrast, although the perspective of the sense of fearing theory (hyper new negligence theory) holds that the possibility of results foreseeing only requires the conductor to have a sense of fearing about the harmful result is enough, which is criticized by the mainstream view, this criticism is worth of discussion. Firstly, it only sees the fear requirement on the surface of this stance, but it does not see the core view behinds of the perspective of the theory of fearing: The correlation between the possibility of foreseeing and the obligation of avoiding results. Secondly, the opinion that the author’s judgment on individual cases is equivalent to the theory of fearing itself is an overgeneralization. Compared with the modified old negligence theory and the new negligence theory, the core point of the theory of fearing that there is correlation between the possibility of the foreseeing of result and the obligation of result avoidance is a reasonable scheme to judge the criminal negligence of the algorithm designer of intelligent products. Based on the core view of the theory of fearing, criminal negligence includes objective possibility of the possibility of foreseeing results, objective obligation of foreseeing results and objective obligation of avoiding results. The criterion for the objective the possibility of foreseeing results of the algorithm designer of artificial intelligence products is that the algorithm system is likely to make an adverse decision once it encounters a special situation containing abnormal factors, which may lead to negative consequences. The objective result avoiding obligation of the algorithm designer is that the algorithm system should be foreseen not only for the normal situation without abnormal factors, but also for the special situation accompanied by abnormal factors. Once the designed algorithm system encounters special situations, the system may make adverse decisions. The content of objective result avoiding obligation of algorithm designer is as follows: it is necessary to avoid implanting values that are generally opposed or disapproved by the public when designing algorithms; The quality of the data fed to the algorithm system should be checked at designing time to prevent the risk of "garbage in" of defective data into the algorithm machine learning training to the greatest extent, Informing the product producer promptly that the algorithm may face abnormal conditions.

    参考文献
    [1] 付玉明.自动驾驶汽车事故的刑事归责与教义展开[J].法学,2020(9):135-152.
    [2] 瑞恩·卡洛,迈克尔·弗鲁姆金,伊恩·克尔.人工智能与法律的对话[M].陈吉栋,董惠敏,杭颖颖,译.上海:上海人民出版社,2018:3.
    [3] GAL M S.Algorithmic challenges to autonomous choice[J].Michigan Technology Law Review, 2018,25(1):59-104.
    [4] 李开复,王咏刚.人工智慧来了[M].台北:远见天下文化出版股份有限公司,2017:58.
    [5] 张丽卿.人工智慧时代的刑法挑战与对应:以自动驾驶车为例[M]//张丽卿.人工智慧与法律冲击.台北:元照出版有限公司,2020:190-212.
    [6] 埃里克·希尔根多夫.自动化驾驶的伦理及法律之挑战[M]//张丽卿.人工智慧与法律挑战.台北:元照出版有限公司,2020:396-417.
    [7] 丁晓东.论算法的法律规制[J].中国社会科学,2020(12):138-159,203.
    [8] 劳东燕."人脸识别第一案"判决的法理分析[J].环球法律评论,2022(1):146-161.
    [9] 张凌寒.权力之治:人工智能时代的算法规制[M].上海:上海人民出版社,2021:28.
    [10] DIAKOPOULOS N.Algorithmic accountability:Journalistic investigation of computational power structures[J].Digital Journalism,2015,3(3):398-415.
    [11] YUR,ALÌGS.What’s inside the black box?AI challenges for lawyers and researchers[J].Legal Information Management,2019,19(1):2-13.
    [12] 许玉秀.主观与客观之间:主观理论与客观归责[M].北京:法律出版社,2008:155.
    [13] 劳东燕.风险社会中的刑法:社会转型与刑法理论的变迁[M].北京:北京大学出版社,2015:24-25.
    [14] 许迺曼.过失犯在现代工业社会的捉襟见肘[G]//许玉秀,陈志辉.不移不惑献身法与正义:许迺曼教授刑事法论文选辑.台北:新学林出版股份有限公司,2006:521.
    [15] 周光权.刑法总论[M].第4版.北京:中国人民大学出版社,2021:160-163.
    [16] 西田典之.刑法総論[M].第3版.橋爪隆,補訂.东京:弘文堂,2021:271-272.
    [17] 曹菲.管理监督过失研究:多角度的审视与重构[M].北京:法律出版社,2013:42.
    [18] 汉斯·韦尔策尔.目的行为论导论:刑法理论的新图景[M].增补第4版.陈璇,译.北京:中国人民大学出版社,2015:11-13.
    [19] 周光权.行为无价值论与主观违法要素[J].国家检察官学院学报,2015(1):78-92,174.
    [20] 大塚仁.刑法概说(总论)[M].冯军,译.北京:中国人民大学出版社,2003:199.
    [21] WELZEL H.Das neue bild des strafrechtssystems:Eine einfuhrung in die finale handlungslehre[M].Verlag Otto Schwartz & Co.Göttingen,1961:30-32.
    [22] 陈子平.刑法总论[M].2008年增修版.北京:中国人民大学出版社,2009:149.
    [23] 大谷实.刑法讲义总论[M].黎宏,姚培培,译.北京:中国人民大学出版社,2023:185.
    [24] Wessel/Beulke/Satzger. Strafrecht Allgemeiner Teil: Die straftat und ihr aufbau[M]. C. F. Müller, 2023, § 18, 1107.
    [25] 井田良.关于日本过失犯论之现状[J].黄士轩,译.月旦法学杂志,2014(12):283-295.
    [26] 张明楷.刑法学[M].第6版.北京:法律出版社,2021:328-382.
    [27] 陈兴良.教义刑法学[M].第3版.北京:中国人民大学出版社,2017:511.
    [28] 王纪轩.人工智慧于司法实务的应用[M]//张丽卿.人工智慧与法律冲击.台北:元照出版有限公司,2020:112-142.
    [29] INTRONA L D.Algorithms,governance,and governmentality:On governing academic writing[J].Science,Technology & Human Values,2016,41(1):17-49.
    [30] BATHAEE Y.The artificial intelligence black box and the failure of intent and causation[J].Harvard Journal of Law & Technology,2018,31(2): 889-938.
    [31] 葛祥林.数位化、大数据和人工智慧对刑事诉讼的冲击[M]//张丽卿.人工智慧与法律冲击.台北:元照出版有限公司,2020:216-236.
    [32] 沈伟伟.算法透明原则的迷思:算法规制理论的批判[J].环球法律评论,2019(6):20-39.
    [33] BODO B,HELBERGER N,IRION K,et al.Tackling the algorithmic control crisis -the technical,legal,and ethical challenges of research into algorithmic agents[J].the Yale Journal of Law & Technology,2017,19:133-181.
    [34] 王莹.算法侵害责任框架刍议[J].中国法学,2022(3):165-184.
    [35] SELBSTAD,BAROCAS S.The intuitive appeal of explainable machines[J].Fordham Law Review,2018,87(3):1085-1139.
    [36] 江溯.中国大陆自动驾驶汽车对法律的挑战[M]//张丽卿.人工智慧与法律冲击.台北:元照出版有限公司,2020:83.
    [37] 许恒达.过失犯的预见可能性与回避可能性[J].台湾中研院法学期刊,2020(27):55-139.
    [38] 蔡圣伟.刑法案例解析方法论[M].第3版.台北:元照出版有限公司,2020:218.
    [39] 山口厚.刑法总论[M].第3版.付立庆,译.北京:中国人民大学出版社,2018:242-251.
    [40] European Parliament.Civil liability regime for artificial intelligence,European Parliament resolution of 20 October 2020 with recommendations to the Commission on a civil liability regime for artificial intelligence(2020/2014(INL)).[EB/OL].(2020-10-20)[2022-05-25].https://www.europarl.europa.eu/doceo/document/TA-9-2020-0276_EN.html.
    [41] LEHR D,OHM P.Playing with the data:What legal scholars should learn about machine learning[J].Davis Law Review,2017,51(2):653-718.
    [42] SCHÜNEMANN B.Unzulänglichkeiten des fahrlässigkeitsdelikts in der modernen industriegesellschaft-eine bestandsaufnahme[M].Berlin,Boston:DE GRUYTER,2002:37-63.
    [43] 阿图尔·考夫曼.法律哲学[M].第2版.刘幸义,译.北京:法律出版社,2011:319.
    [44] 蔡仙.过失犯中的结果避免可能性研究[M].北京:法律出版社,2020:21.
    [45] 姚万勤.新过失论与人工智能过失刑事风险的规制[J].法治研究,2019(4):98-107.
    [46] 黄荣坚.基础刑法学(上)[M].台北:元照出版有限公司,2012:391.
    [47] 刘艳红.实质犯罪论[M].北京:中国人民大学出版社,2014:195.
    [48] 藤木英雄.公害犯罪[M].丛选功,译.北京:中国政法大学出版社,1992:62.
    [49] 高桥则夫.刑法总论[M].李世阳,译.北京:中国政法大学出版社,2020:191.
    [50] 井田良.講義刑法学·総論[M].第2版.东京:有斐閣,2018:217.
    [51] 井田良.過失犯における「注意義務の標準」をめぐって[J].刑法雑誌,2003,42.
    [52] 黄陈辰.论人工智能缺陷产品生产者的刑事责任[J].山东大学学报(哲学社会科学版),2020(6):49-56.
    [53] 衣俊霖.数字孪生时代的法律与问责:通过技术标准透视算法黑箱[J].东方法学,2021(4):77-92.
    [54] 金梦.立法伦理与算法正义:算法主体行为的法律规制[J].政法论坛,2021(1):29-40.
    [55] 沈向洋,施博德.计算未来:人工智能及其社会角色[M].北京:北京大学出版社,2018.
    [56] 苏宇.算法规制的谱系[J].中国法学,2020(3):165-184.
    [57] 王禄生.司法大数据与人工智能开发的技术障碍[J].中国法律评论,2018(2):46-53.
    [58] 观察者网.邯郸特斯拉事故致死案:公司承认案发时处"自动驾驶"状态[EB/OL].(2018-02-27)[2023-03-11].https://www.guancha.cn/society/2018_02_27_448303.shtml.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘嘉铮.人工智能产品算法设计者的犯罪过失判断——以危惧感说的核心观点为立场[J].重庆大学学报社会科学版,2024,30(3):228-241. DOI:10.11835/j. issn.1008-5831. fx.2023.03.004

复制
分享
文章指标
  • 点击次数:136
  • 下载次数: 409
  • HTML阅读次数: 335
  • 引用次数: 0
历史
  • 在线发布日期: 2024-07-07
文章二维码