大数据赋能思政课教师队伍形象建构的多维进路
CSTR:
作者:
作者单位:

电子科技大学 马克思主义学院,四川 成都 611731

作者简介:

通讯作者:

中图分类号:

G41

基金项目:

教育部2022年度高校思想政治理论课教师研究专项重大课题攻关项目“高校思政课的公众形象塑造研究”(22JDSZKZ07);2023年四川省哲学社会科学基金马克思主义理论研究和建设工程一般项目“数字技术驱动高校思政课教师专业发展能力提升研究”(SCJJ23MGC52);2024年度四川省哲学社会科学基金青年项目“人工智能时代高校网络舆情治理研究”(SCJJ24ND211)


A multidimensional approach to empowering the image construction of the teaching staff of ideological and political theory courses with big data
Author:
Affiliation:

School of Marxism, University of Electronic Science and Technology, Chengdu611731, P R China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    办好思政课关键在教师,关键在发挥教师的积极性、主动性、创造性。形象作为思政课教师队伍专业发展程度的重要表现,是思政课建设的重要着力点。立足数字时代,随着大数据的发展成熟与多维应用,面对思政课教师队伍形象建构的实际需求,两者的结合具有内在契合性和现实必要性。把握大数据的功能价值、应用场景以及内蕴的思维理念,厘清形象建构的内在规律和一般过程,能够有效探赜大数据赋能思政课教师队伍形象建构的多维进路。大数据通过作用发挥有效赋能思政课教师队伍的素养提升、结构优化和精准治理,在主体强化中更加主动地建构思政课教师队伍形象。大数据通过推进思政课教师队伍形象设计的理念革新、形象塑造的系统实施、形象传播的融合开展,在环节优化创新中更加有序地建构思政课教师队伍形象。大数据通过破解思政课教师队伍形象建构整体推进和重点突破之间的矛盾、应然和实然之间的矛盾以及形象现实表征和实际感知之间的矛盾,在推动矛盾问题破解中更高质量地建构思政课教师队伍形象。大数据通过助力思政课教师队伍形象建构的综合评价和重点评价相结合、外在评价和自我评价相结合、结果评价和过程评价相结合,在评价优化中更高效地建构思政课教师队伍形象。

    Abstract:

    The key to running ideological and political theory courses well lies in the teachers, and the key is to unleash their enthusiasm, initiative, and creativity. Image, as an important manifestation of the professional development level of the teaching staff of ideological and political theory courses, is an important focus of ideological and political theory courses construction. Based on the digital age, with the development and maturity of big data and its multidimensional applications, the combination of the two has inherent compatibility and practical necessity in the face of the actual demand for the image construction of the teaching staff of ideological and political theory courses. Grasping the functional value, application scenarios, and inherent thinking concepts of big data, clarifying the internal laws and general processes of image construction, can effectively explore the multidimensional approach of big data empowering the image construction of the teaching staff of ideological and political theory courses. Big data effectively empowers the quality improvement, structural optimization, and precise governance of the teaching staff of ideological and political theory courses through its role, and actively constructs the image of the teaching staff of ideological and political theory courses through subject strengthening. Big data promotes the concept innovation of image design for the teaching staff of ideological and political theory courses, the systematic implementation of image shaping, and the integration of image dissemination, in order to build a more orderly image of the teaching staff of ideological and political theory courses through process optimization and innovation. Big data aims to solve the contradiction between the overall promotion and key breakthroughs of the image construction of the teaching staff of ideological and political theory courses, the contradiction between what is and what should be, and the contradiction between the representation of image reality and actual perception, in order to construct the image of the teaching staff of ideological and political theory courses with higher quality in promoting the resolution of contradiction problems. Big data combines comprehensive evaluation and key evaluation, external evaluation and self-evaluation, result evaluation and process evaluation to help construct the image of the teaching staff of ideological and political theory courses more efficiently in evaluation optimization.

    参考文献
    相似文献
    引证文献
引用本文

聂小雄.大数据赋能思政课教师队伍形象建构的多维进路[J].重庆大学学报社会科学版,2025,(1):301-310. DOI:10.11835/j. issn.1008-5831. pj.2024.12.009

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-25
  • 出版日期:
文章二维码