智能革命下的人力重构:DeepSeek、Manus类生成式人工智能对人力资源市场的挑战、影响及治理研究
CSTR:
作者:
作者单位:

重庆大学 公共管理学院,重庆 400044

作者简介:

李志,重庆大学公共管理学院教授,博士研究生导师,Email:lzmx@cqu.cn
骆行,重庆大学公共管理学院博士研究生。

通讯作者:

中图分类号:

F272.92;TP18

基金项目:

重庆市社会科学基金重点项目“重庆乡村干部群众工作能力评估与提升策略研究”(2023NDZD03)


Human resource restructuring under the intelligent revolution: A study on the challenges, impacts, and governance of generative AI like DeepSeek and Manus on the human resource market
Author:
Affiliation:

School of Public Administration, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在数字化智能革命深入推进的背景下,DeepSeek、Manus类生成式人工智能正以颠覆性力量重构人力资源市场,促使传统岗位自动化替代与新型职业模式迅速涌现,进而引发技能结构和价值分配体系的根本性变革。此研究以DeepSeek、Manus类生成式人工智能为切入点,构建了智能革命与人力资源市场互动关系的理论模型,系统梳理了技术冲击维度和市场重构机制,深入分析了知识密集型岗位自动化、认知劳动价值链重构、人机协作模式演进以及传统技能与新兴技能转换的内在逻辑。研究发现,DeepSeek、Manus类生成式人工智能在提升生产效率、优化劳动过程、促进产业升级等方面发挥了积极作用,但其快速应用的同时也暴露出人事制度滞后、职业认证断层、算法偏见和数字监控等伦理风险,导致劳动者利益保障、就业公平及社会保障体系面临严峻挑战。针对上述问题,文章提出以制度创新为核心,构建动态适应的监管框架和全民基本技能账户,强化劳动关系立法;同时,通过产教融合、公共支持和职业转型培训等措施,优化人才培养机制,提升终身学习能力,实现人机协同和高质量人力资本培养。此外,设立过渡期就业保障基金、完善数字税及收入再分配机制,以缓解数字鸿沟引发的收入极化风险。研究结论认为,技术进步与市场变革虽为人力资源市场带来前所未有的发展机遇,但必须通过多维度协同治理和制度保障,方能推动技术红利公平惠及全体劳动者,从而实现生产力与人力资本的协同提升和社会整体稳定。文章的理论分析和治理建议不仅可以为政府和企业制定应对智能革命冲击的政策措施提供理论支撑和实践参考,也能够为未来深入探索新型人力资源管理模式指明方向。

    Abstract:

    In the context of the ongoing digital and intelligent revolution, generative AI like DeepSeek and Manus is radically reshaping the human resource market, driving the automation of traditional jobs and the rapid emergence of new occupational models. This has resulted in a fundamental transformation of skill structures and value distribution systems. This study focuses on generative AI like DeepSeek and Manus, developing a theoretical model to explore the interaction between the intelligent revolution and the human resource market. The study systematically examines the dimensions of technological impact and market reconstruction mechanisms, and conducts an in-depth analysis of the automation of knowledge-intensive jobs, the restructuring of the cognitive labor value chain, the evolution of human-machine collaboration models, and the internal logic of traditional and emerging skill transitions. The research finds that generative AI like DeepSeek and Manus plays a positive role in improving productivity, optimizing labor processes, and promoting industrial upgrades. However, their rapid application has exposed ethical risks, such as institutional lag, gaps in professional certification, algorithmic bias, and digital surveillance, which challenge laborers' rights protection, employment fairness, and social security systems. In response to these issues, the study proposes taking institutional innovation as the core, constructing a dynamic adaptive regulatory framework and universal basic skill accounts, along with strengthening labor relations legislation. It also suggests optimizing talent training mechanisms, enhancing lifelong learning capabilities, and promoting human-machine collaboration and high-quality human capital development through industry-education integration, public support, and vocational transformation training. Furthermore, it advocates for the establishment of a transitional employment protection fund and the improvement of digital taxes and income redistribution mechanisms to mitigate the income polarization risks caused by the digital divide. The research concludes that, although technological progress and market transformation bring unprecedented opportunities for the human resource market, it is essential to drive the fair distribution of technological benefits to all workers through multidimensional collaborative governance and institutional safeguards, achieving a synergistic enhancement of productivity and human capital as well as overall social stability. The theoretical analysis and governance recommendations of this study not only provide theoretical support and practical references for governments and businesses in formulating policies to respond to the impacts of the intelligent revolution, but also point the way forward for exploring new human resource management models in the future.

    参考文献
    相似文献
    引证文献
引用本文

李志,骆行.智能革命下的人力重构:DeepSeek、Manus类生成式人工智能对人力资源市场的挑战、影响及治理研究[J].重庆大学学报社会科学版,2025,31(3):105-117. DOI:10.11835/j. issn.1008-5831. pj.2025.02.003

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-15
  • 出版日期:
文章二维码