智能制造促进企业新质生产力发展研究——基于双重机器学习的因果推断
CSTR:
作者:
作者单位:

1.南华大学 经济管理与法学学院,湖南 衡阳 421000;2.南开大学 经济学院,天津 300073

作者简介:

邓荣荣,南华大学经济管理与法学学院教授
肖湘涛(通信作者),南开大学经济学院博士研究生,Email:uscnum178@126.com。

通讯作者:

中图分类号:

F425;F49

基金项目:

国家社会科学基金项目“农村集体经济组织分享宅基地增值收益的理论机制与实现路径研究”(24BJY147)


Research on intelligent manufacturing driving the development of new quality productivity of enterprises: Causal inference based on double machine learning
Author:
Affiliation:

1.School of Economics, Management and Law, University of South China, Hengyang 421000, P.R.China;2.School of Economics, Nankai University, Tianjin 300073, P.R.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    推动新质生产力发展是我国在新发展阶段实现经济高质量发展的重点任务和内在要求,企业是经济社会高质量发展的重要载体与承担主体,如何推动企业新质生产力发展具有重要的理论与现实价值。文章基于中国加快构建智能制造发展生态的现实背景,将国家智能制造示范项目作为一项准自然实验,采用文本分析法构建企业新质生产力的衡量指标,在此基础上应用双重机器学习方法探讨了智能制造战略对企业新质生产力发展的影响效应和作用机制。研究发现:智能制造战略能显著促进企业新质生产力水平的提升,这一结论在经过包含内生性处理等系列稳健性检后依然成立;智能制造并非等效作用于各类企业的新质生产力水平,在非国有企业、技术密集型企业、知识产权保护水平较高地区以及信息基础设施完善地区的企业,智能制造对其新质生产力的赋能作用更为明显;智能制造战略主要通过优化企业人力资本结构、降低企业信息获取成本、缓解企业资金约束等三个渠道促进企业新质生产力发展。文章在研究视角上探寻了智能制造对企业新质生产力水平的影响效应与作用路径,有益地丰富与充实了新质生产力发展的相关研究,为从产业智能化视角探寻企业新质生产力提升路径提供了理论与中国情景的经验证据;在研究内容上,考察了企业所有制类型、企业生产要素属性、区域知识产权保护水平和信息基础设施水平异质性对企业新质生产力发展的影响效果,为有针对性的政策建议提供了更为细致的实证结论;在研究方法上,使用当前政策评估中较为前沿的双重机器学习方法,较好地避免传统计量模型应用于因果推断产生的内生性偏误;在变量测度上,采用综合考虑新型生产技术、新兴生产要素、先进组织配置方式等新质生产力内涵关键词词频的文本分析法构建企业新质生产力的衡量指标,克服了现有指标体系法存在的指标要素过多不易满足单一性、一致性和可加性等公理化准则的局限。研究内容和结论对于我国当前抓住智能制造契机赋能企业新质生产力提升具有重要的参考价值。

    Abstract:

    Promoting the development of new quality productive forces is a key task and inherent requirement for China to realize high-quality economic development in the new stage of development. Enterprises are important carriers and commitment subjects for high-quality economic and social development. How to promote the development of new quality productive forces in enterprises has important theoretical and practical value. Based on the realistic background of accelerating the construction of intelligent manufacturing development ecology in China, this paper takes the national intelligent manufacturing demonstration project as a quasi-natural experiment, adopts text analysis method to construct the measurement index of enterprise new quality productivity, and then applies the dual machine learning method to explore the influence effect and mechanism of intelligent manufacturing strategy on the development of enterprise new quality productivity. It is found that intelligent manufacturing strategy can significantly promote the improvement of new quality productivity of enterprises, and this conclusion is still valid after a series of robustness tests including endogenous processing. Intelligent manufacturing is not equivalent to the new quality productivity of all kinds of enterprises. In non-state-owned enterprises, technology-intensive enterprises, areas with high intellectual property protection level and areas with perfect information infrastructure, intelligent manufacturing has a more obvious enabling effect on their new quality productivity. Intelligent manufacturing strategy mainly promotes the development of new quality productivity of enterprises through three channels: optimizing the human capital structure of enterprises, reducing the cost of information acquisition of enterprises, and easing the capital constraints of enterprises. From the perspective of the research, this paper explores the influence effect and action path of intelligent manufacturing on the level of new quality productivity of enterprises, which helps to enrich the relevant research on the development of new quality productivity, and provides theoretical and empirical evidence of China’s scenario for exploring the path of improving new quality productivity of enterprises from the perspective of industrial intelligence. In terms of research content, the effects of heterogeneity such as the type of enterprise ownership, the attributes of production factors, the level of regional property rights protection and the level of information infrastructure on the development of new quality productivity of enterprises are investigated, and more detailed empirical conclusions are provided for targeted policy recommendations. In terms of research methods, the use of the more advanced dual machine learning method can better avoid the bias and endogeneity problems of the traditional econometric model applied to policy causal inference. In terms of variable measurement, the text analysis method that comprehensively considers the word frequency of core terms connoted in new-quality productivity, such as new production technology, emerging production factors, advanced organization configuration, is adopted to construct the measurement index of enterprise new quality productivity, which overcomes the limitation that the existing index system method has too many index elements and easily fails to meet the axiomatic criteria such as unity, consistency and additivity. The research content and conclusion have reference value for China to seize the opportunity of intelligent manufacturing to enable enterprises to improve new quality productivity.

    参考文献
    相似文献
    引证文献
引用本文

邓荣荣,肖湘涛.智能制造促进企业新质生产力发展研究——基于双重机器学习的因果推断[J].重庆大学学报社会科学版,2025,31(5):48-61. DOI:10.11835/j. issn.1008-5831. jg.2025.09.002

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-05
  • 出版日期:
文章二维码