解三对角Toeplitz方程组的MIMD并行算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:


A MIMD PARALLEL ALGORITHM TO SOLVE TRIDIAGONAL TOEPLITZ LINEAR EQUATIONS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文把秩1修正技术和一阶线递推并行消去法结合起来,给出了求解三对角Toeplitz方程组的MIMD并行算法,该算法结构简单,存储省,处理机之间通讯比较少,而且对处理机台数没有特殊要求,相对于追赶法的加速比可接近P/2(P为处理机台数)。值得指出的是,本文的算法关键产考虑并组织了一阶常系数线性递推的并行计算。

    Abstract:

    The rank one updating formula and the parallel eliminating algorithm for linear recurrence systems ane combined fo form a MTMD parallel algorithm fo solve tridiagonal Toeplitz Cinear equations. This algorithm has a simple strictire and requires onlty a few storages as well as in-terprocessor communications. There is no special demand on the number of processors in the parallel system. The speedup can come dose to p12 comparing with the LU decomposition method (p is the number of processors). It is worth pointing out that it is proposed algcmthn that considels and organizes the parallel arithmetic in the first order linear ricurrence systems with constant coefficients.

    参考文献
    相似文献
    引证文献
引用本文

陈国清 陈廷槐.解三对角Toeplitz方程组的MIMD并行算法[J].重庆大学学报,1992,15(4):21-25.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码