基于粗糙集理论的人工神经网络故障诊断系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP277 TP183

基金项目:

总参军训部国防预研基金、国家高等学校博士学科点专项基金!( 980 61117)


Artificial Neural Network Fault Diagnosis System Based on Rough Set Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在故障诊断神经网络模型的基础上,以粗糙集理论中的信息系统属性值表为主要工具,将复杂的神经网络分层的简并剔除其中不必要的属性,克服了网络规模过于庞大及分类识别速度慢等缺点,取得了减少分类过程中的模式匹配搜索量的良好效果,并给出基于粗糙集理论的分层发掘神经网络模型结构及算法,结果表明该系统对工程应用具有一定的参考价值。

    Abstract:

    On the basis of fault diagnosis neural network model, in this paper, knowledge representation system of rough set theory is taken as a major tool to delaminate the complex neural network and in which unnecessary properties are eliminated. This method overcomes some shortcomings, such as network scale is too large and the rate of classification is slow. The good effect that reduces the matching quantity of pattern search in classification course is gotten. The structure and algorithm of layered-mining neural network model based on rough set theory are also given. The example shows that this system has higher reference value in practical application.

    参考文献
    相似文献
    引证文献
引用本文

孙颖楷 曹龙汉 等.基于粗糙集理论的人工神经网络故障诊断系统[J].重庆大学学报,2000,23(6):53-.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码