C^∞系数的二阶奇性常微分方程解的形式
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O175.1

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    设p(t)、q(t)∈C^∞[0,+∞),若λ1、λ2是指标方程λ(λ-1) p(0)λ q(0)=0的根,Reλ1≥Reλ2,则方程t^2utt tp(t)ut 1(t)u=0在(0,+∞)内的任一解均可表示为(c1 c2hlnt)t^λ1φ(t) c2t^λ2φ(t),其中c1,c2是任意常数,φ(t)、φ(t)∈C^∞[0, ∞),φ(0)=φ(0)=1,h是一定值且当λ1-λ2≠0,1,2…时,h=0;当λ1=λ2时,h=1。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

向长合.C^∞系数的二阶奇性常微分方程解的形式[J].重庆大学学报,2000,23(6):131-134.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码