抛物型问题的边界元重叠型区域分解法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O241.82 O246

基金项目:


Boundary Element Methods with Overlapping Domain Decomposition for Parabolic Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    边界元法是一种求解偏微分方程数值的计算方法,用边界元法来求解抛物型方程,如采用与时间有关的基本解,较其它方法可以采用较长的时间步长,从而节省计算时间,且计算结果精度高。区域分解法是把计算区域分解成若干子区域来分别求解,由于它将原问题分解,由大化小,由复杂化简单,并且可以并行计算,优越性是显而易见的。将这两种方法结合起来(边界元重叠型区域分解法)求解抛物型方程,利用区域分解法将求解区域划分为两个小的子区域,然后在子区域上用边界元法并行求解方程。数值算例表明边界元重叠型区域分解法行之有效的,数值试验显示这种方法的收敛速度依赖于子区域重叠面积。

    Abstract:

    Boundary element method is a numerical method for solving partial differential equations. There are several formulations of boundary element method (BEM) applied to solve a parabolic differential equation.The approach,which employs time- dependent fundamental solution,allows longer time steps in time integration than other approaches,and this can cut down on time for computer implementation with high precision.Domain decomposition method,which decompose the domain that a given problem is to be solved into subdomains,has the advantages of reducing the large problem into smaller ones and reducing the complex problem into simpler ones,and allows parallel computing.An overlapping domain decomposition method is applied combining a boundary element formulation with time-dependent fundamental solution to solve a diffusion equation. Firstly, by domain decomposition, the problem divided into two problems on subdomains, and then the initial-Boundary problems are solved by boundry element method on each subdomain.Some numerical examples are presented to illustrate feasibility and efficiency of the method. The numerical experiments show that the convergence rate of the method is dependent with the overlapping degree of the subdomains.

    参考文献
    相似文献
    引证文献
引用本文

张太平 祝家麟.抛物型问题的边界元重叠型区域分解法[J].重庆大学学报,2002,25(2):75-78.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2001-10-15
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码