A new kind of evaporative heat transfer experiment for the cooling process of condensers is conducted. The test coil is immersed in an air-water bubbling layer. The air-water two-phase flow passes through the heating tubes of the coil. Due to the motion of the air bubbles in the water, a thin water film forms on the surface of the heating tubes. As the air bubbles passing by the tubes the water is evaporated into the air. The tubes of coil reject heat to the water film, and the evaporation of the water film then rejects heat to the air bubble stream. This heat transfer mode significantly increases the heat transfer coefficient between tubes and air. The consumption of the power of a water pump can be decreased. Moreover, the airflow rate required is less than that of an air-cooled condenser.The pressure drop of air through air-water bubbling layer and the heat transfer between the tubes and water are experimentally investigated in the paper. The results show that the factors affecting the pressure drop and the heat transfer coefficient involve the pore geometry of sieve plate, the height of the air-water bubbling layer, the air flow rate through the sieve plate and the heat flux of tubes. The heat transfer coefficient between tube and water is two times larger than that of falling film of water on the outer surface of tube.