Abstract:The paper aims to investigate natural frequency of delaminated advanced grid stiffened composite plates by hump resonance method.The composite laminated plate element and the rib element are adapted to simulate the laminated plate and the ribs.Based on the composite laminated plate and beam element model considering first-order shear effect,a damping model on the basis of Rayleigh damping model in conjunction with Adams' strain energy method(MSE) and a Hertz nonlinear dynamic contact model to avoid the overlap and penetration phenomenon between the upper and lower sub-laminates at the delaminated region.A numerical analysis method of dynamic response for the delaminated composite plates is carried out by precise time-integration method,and then the natural frequencies are achieved when the dynamic deflections reach the hump peak.For the frequency-domain analysis provided in the former research papers,it is a difficult problem to avoid the embedded phenomenon in the mode shapes at the delamination zone,while in the current time-domain analysis,the embedded phenomenon can be successfully overcome by using nonlinear contact model.By vibration excitation test,the specimens were excited by different excited frequency and the amplitude frequency response characteristics obtained are used to extract the frequency.The extracted frequencies of the narrow delaminated composite plates measured,which agrees well with the predicted natural frequencies.