摘要:汽轮发电机组的振动故障具有多样性的特点,经常出现多种故障同时发生的情况.传统的BP神经网络方法可对单一故障有效诊断,若要对多故障进行诊断,则需对各种多故障样本进行学习,使输入空间在训练过程中被样本空间完全覆盖,将大大增加样本空间及学习训练负担,同时网络归纳、联想能力随之大幅度下降,诊断难以实施.因此,将自组织特征映射(SOM)神经网络应用于汽轮发电机组的振动多故障诊断,用单一故障样本对网络进行训练,根据输出神经元在输出层的位置对多故障进行判断.经实例分析证明,该方法可对多故障进行有效诊断.