铸造铝硅合金液相线自适应神经-模糊建模
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TG113.12

基金项目:

中国工程物理研究院科技基金


Modeling of Liquidus Temperature for Al-Si Cast Alloys with Adaptive Neuro-fuzzy Inference System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在合金熔炼和加工过程中,往往需要知道液相线温度,以便确定相关工艺参数.建立能从成分预测铝硅系工业铸造合金液相线温度的模型.收集工业合金实测数据,采用模糊推理方法,建立了合金液相线温度的自适应神经-模糊推理模型.它具有Takagi-Sugeno型网络结构,能直接从数据中提取推理规则,并可利用前馈神经网络的学习能力调整参数.与现有的其它统计回归模型相比,模糊推理模型能反映成分之间的交互作用,具有更高的预测精度.在铸造合金研究、热力学计算和凝固过程数值模拟时,所建立的模型可用于计算工业合金的液相线温度.

    Abstract:

    During the melting and processing practices, an accurate knowledge of liquidus temperature is necessary in the determination of process parameters relating to a given alloy. Adaptive neuro-fuzzy inference system (ANFIS) modeling method has been used to improve accuracy of prediction for liquidus temperature based on the compositions of Al-Si series cast alloys. The developed fuzzy inference system could extract Takagi-Sugeno type fuzzy rules from data directly, and has a feed-forward network structure with supervised learning capability. In order to adapt the parameters of the model, the proposed fuzzy inference system is trained over a wide range of compositions from the published data of industrial alloys. The result shows that, the developed ANFIS model can capture non-linear relationships between compositions and liquidus temperature, and then provides better prediction than the reported multiple statistic analysis. The developed model can be used to predict the liquidus temperature needed in computer modeling and thermodynamic calculation, which are needed in the aluminium alloys casting industry and research.

    参考文献
    相似文献
    引证文献
引用本文

夏伯才,钱翰城.铸造铝硅合金液相线自适应神经-模糊建模[J].重庆大学学报,2005,28(3):50-53.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2004-11-18
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码