基于小波变换的脑电噪声消除方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH834

基金项目:

重庆市自然科学基金 , 重庆市科委资助项目


EEG Signal Denoising Based on Wavelet Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分析了基于传统陷波器的脑电消噪方法,根据脑电噪声所处频带及陷波器原理,设计了一种陷波器.并提出了基于小波变换的脑电信号分析方法并利用它来消除脑电信号中的噪声干扰.小波变换是一种多分辨率的时间-尺度分析方法,它能够将信号划分为不同频段的子带信号.根据小波变换的这一特性,对采样获得的脑电信号进行各尺度分解及消噪分析,并给出了各尺度分解结果及消噪结果.最后对这两种方法的消噪结果进行比较.分析表明:利用小波变换能更有效、灵活地检测并去除脑电信号中的噪声干扰.

    Abstract:

    The article focuses on the method of noise cancellation for EEG signal. The method of notch filter is discussed. According to the frequency of noise and the principle of notch filter, the design result of the notch filter and the denoised signal are presented. Then, the analysis of EEG signal are proposed based on wavelet transform (WT) and noise cancellation using WT. Wavelet transform is a multi-resolution time-frequency analysis method. It can decompose mixed signal into signals at different frequency bands. The EEG signal is analyzed and denoised using WT, then the results are presented respectively. Comparing the experiment results shows that WT can detect and process noise in the EEG signal effectively.

    参考文献
    相似文献
    引证文献
引用本文

王巧兰,季忠,秦树人.基于小波变换的脑电噪声消除方法[J].重庆大学学报,2005,28(7):15-.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码