多峰函数优化的混合遗传算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:


Hybrid Genetic Algorithms for Multimodal Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究了2种基于最速下降法和遗传算法的求解多峰函数优化问题的混合遗传算法,以Schaffer函数的全局优化问题和收敛概率、平均收敛时间和平均收敛值等评价指标检验了混合算法的性能.结果表明混合算法的性能优于单独的遗传算法或最速下降法,采用随机方式选择局部优化个体的混合遗传算法性能在总体上优于从每代群体中选择适应度高的个体进行局部优化的混合遗传算法.

    Abstract:

    Hybrid genetic algorithms, which are based on steepest descent algorithm and genetic algorithm, are investigated for the purpose of multimodal optimization. The performances of the hybrid genetic algorithms are evaluated with criteria such as convergence probability, average convergence time and average convergence value of the function in the case of solving global optimization for Schaffer function. It is shown that the performances of the hybrid genetic algorithms are better than steepest decent algorithm or genetic algorithm, and the hybrid genetic algorithm, in which the individuals used for local optimization by steepest decent method are chosen by chance in each generation population, is more efficient than that in which the individuals used for local optimization by steepest descent method are selected from excellent individuals.

    参考文献
    相似文献
    引证文献
引用本文

张琳,郑忠,高小强.多峰函数优化的混合遗传算法[J].重庆大学学报,2005,28(7):51-54.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2005-03-16
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码