平面定常Stokes方程的Galerkin边界元解泌
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O241.82

基金项目:


Galerkin Boundary Element Method for Plane Stationary Stokes Equation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    把平面定常Srokes方程的边值问题转化为边界积分方程后,通过与边界积分方程等价的变分形式,采用线性单元,利用Galerkin边界元方法求解.在计算单元刚度矩阵时,对二重积分的第一重使用精确积分,第二重使用数值积分,详细推导了第一重积分的解析公式.数值算例验证了Galerkin方法误差的理论结:E(u)=O(h^2)

    Abstract:

    The boundary problem of plane stationary Stokes equation is changed into the variation equation which is equivalent to the boundary integral equations. With linear boundary elements, it is solved by Galerkin boundary element method. In computation of stiffness matrix, the exactly integral formula is used in the first integral expression. The numerical integral formula is used in the second integral expression. The authors deduce the analytical formula of the first integral in detail. The numerical experiments also prove this method is reliable and quickly. The error of Galerkin boundary method is tested with numerical experimentation.

    参考文献
    相似文献
    引证文献
引用本文

向瑞银 祝家麟.平面定常Stokes方程的Galerkin边界元解泌[J].重庆大学学报,2006,29(2):128-131.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-09-30
  • 最后修改日期:2005-09-30
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码