吸毒者脉象信号的小波与神经网络分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R318.04

基金项目:

重庆市自然科学基金


Pulse Signal Analysis of Druggers with the Wavelet and Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海洛因吸毒者与正常人脉象信号最显著的区别在于作为时间函数的幅度波形.两者在某特定的时间区域内的幅值及其变化速率均呈现显著的差别.然而,由小波变换所得的脉象信号尺度系数的子分量和小波系数的子分量恰好可以揭示这样的关键特征.应用小波变换的多分辨率分析法对15例海洛因吸毒者和15例正常人的脉象信号进行分析,利用db2正交小波对每一例脉象信号进行3层分解,取出第3层尺度系数的第6个分量和第3层小波系数的第2个分量的绝对值构成特征向量.设计具有良好性能的概率神经网络对获得的30个特征向量进行自动检测.在网络的设计中,取20个特征向量作为训练样本,另外10个作为测试样本.据此,15例正常人和15例吸毒者全部予以正确地检测出来,检测率达到了100%.

    Abstract:

    The most significant difference between the human pulse signals collected from heroin druggers and healthy persons is at their amplitude waveforms as time functions. That is, the amplitude values and change rates of two types of signals, within a particular time range, appear different features. However, the partial components of the scaling and wavelet coefficients of the pulse signals obtained by using wavelet transform can reveal such key features. The pulse signals of 15 heroin druggers and 15 healthy persons are analyzed through using the muhiresolution analysis of wavelet transform. By using db2 orthogonal wavelet, every pulse signal is decomposed into three levels and the absolute values of the sixth component of scaling coefficients and the second component of the wavelet coefficients in the third level are combined to form a feature vector. A probabilistic neural network with good detection performance is successfully designed for automatically detecting 30 feature vectors. During the network design, 20 feature vectors are used as training samples. The remained 10 feature vectors are used as testing samples. Based on these steps, 15 heroin druggers and 15 healthy persons are all correctly identified. In other words, the detection rate arrives at 100%. druggers.

    参考文献
    相似文献
    引证文献
引用本文

蔡坤宝,吴太阳,戴光明.吸毒者脉象信号的小波与神经网络分析[J].重庆大学学报,2007,30(10):50-54.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2007-05-21
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码