Abstract:The most significant difference between the human pulse signals collected from heroin druggers and healthy persons is at their amplitude waveforms as time functions. That is, the amplitude values and change rates of two types of signals, within a particular time range, appear different features. However, the partial components of the scaling and wavelet coefficients of the pulse signals obtained by using wavelet transform can reveal such key features. The pulse signals of 15 heroin druggers and 15 healthy persons are analyzed through using the muhiresolution analysis of wavelet transform. By using db2 orthogonal wavelet, every pulse signal is decomposed into three levels and the absolute values of the sixth component of scaling coefficients and the second component of the wavelet coefficients in the third level are combined to form a feature vector. A probabilistic neural network with good detection performance is successfully designed for automatically detecting 30 feature vectors. During the network design, 20 feature vectors are used as training samples. The remained 10 feature vectors are used as testing samples. Based on these steps, 15 heroin druggers and 15 healthy persons are all correctly identified. In other words, the detection rate arrives at 100%. druggers.