模糊反向传播算法及其收敛性
中图分类号:

TP18

基金项目:

重庆市教委资助项目 , 重庆市高等学校优秀中青年骨干教师资助计划


Fuzzy Backpropagation Algorithms and Their Convergence
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对S.Stoeva提出的基于相同样本及网络输出的模糊神经网络模型,通过对基于极大-极小模糊算子的模糊神经网络模型的研究,证明了其与S.Stoeva提出的网络模型的等价性.在此基础上提出了依赖于模糊逻辑神经元输出的调整模糊权值的模糊反向传播学习算法,并进一步研究了其收敛性.最后以汽轮发电机组的状态监测为例进行仿真分析.结果表明:在网络输入神经元满足样本输出介于样本输入的极大与极小之间时,所提出的模糊反向传播学习算法是收敛的.

    Abstract:

    The equivalence between fuzzy neural networks model for max-min fuzzy operator and S.Stoeva's is proved by studying the fuzzy neural networks model for max-min fuzzy based on S.Stoeva's.Then the paper proposes the fuzzy backpropagation learning algorithms for changing fuzzy power and probes their convergence properties.Finally,it simulates experiment such as state monitoring of turbo-generator set.The results show that the fuzzy backpropagation learning algorithms presented are convergent on condition that the output of training sample is between maximum and minimum of its input.

    参考文献
    相似文献
    引证文献
引用本文

魏延,李世宏,曹长修,曾绍华.模糊反向传播算法及其收敛性[J].重庆大学学报,2007,30(2):65-69.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 最后修改日期:2006-08-28
文章二维码