摘要:研究了一类源自模式演化问题的非线性发展方程所产生的动力系统,并考虑了其全局吸引子的存在性及维数估计问题.这类模式演化方程与化学反应和火焰燃烧有密切关系,因此具有重要的物理背景,而且因为它含有关于空间变量的四阶微分算子,还具有重要的理论价值.借助插值不等式以及sobolev嵌入定理,可以进行一系列精细的估计,最终根据一个经典的结果,证明了在维数不超过三维的空间中的有界集合上,系统的全局吸引子存在.进一步应用Sobolev-Lieb-Thirring不等式进行估计,可以得到全局吸引子的分形维数的界.