模态参数识别中频响函数估计的最小二乘优化
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V414.3

基金项目:

国家自然科学基金 , 教育部跨世纪优秀人才培养计划


Least-square-based Optimization of Frequency Response Function Estimation in Modal Parameters Identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模态参数识别的精度将会直接影响到机械结构系统动力特性分析的质量,而频响函数的估计精度对模态参数识别精度影响很大.工程中通常借助FFT采用功率谱平均估计频响函数.由于FFT过程中截断及舍入等误差的存在以及噪声的影响不能完全克服,采用此方法估计的频响函数来识别模态参数,其精度受到影响.因此,在分析频响函数的理论值与功率谱平均估计值的误差函数的基础上,应用最小二乘法对频响函数的估计进行优化.通过实测试验对该方法的有效性进行了验证.试验结果表明:采用优化后的频响函数识别的阻尼固有频率和阻尼比比没有优化直接峰值搜索得到的结果更接近真实的结果,该方法能够提高模态参数识别的精度.

    Abstract:

    The accuracy of modal parameters identification has the influence on the quality of dynamic characteristics analysis of mechanical structure directly. And the precision of the frequency response function estimation has the great influence on the accuracy of modal parameters identification. In the engineering the frequency response function can be estimated by the average power spectrum and cross-power spectrum with the hel Pof FFT. As the result of limited frequency resolution in the course of FFT and the noise, the accuracy of modal parameters identification is influenced by the frequency response function estimation. This paper has put forward a least-square-based optimization of frequency response function estimation in modal parameters identification. According to the optimized frequency response function, the peak value can be searched to identify the damped natural frequencies and damping ratio directly. An experiment has been made to validate the proposed method. The result indicates that the damped natural frequencies and damping ratio identified by the optimized frequency response function are closer to the true results than which without the optimized frequency response function. So the accuracy of modal parameters identification can be improved by adopting the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

陆冬,汤宝平,何启源,魏玉果.模态参数识别中频响函数估计的最小二乘优化[J].重庆大学学报,2007,30(3):6-10.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2006-10-16
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码