摘要:结合文档频数DF(Document Frequency)和特征相似度FS(Feature Similarity)方法,提出一种新的无监督特征选择方法DFFS.该方法利用文档频数过滤掉90%的特征之后,再借助特征相似度移除尽可能多的冗余特征.采用K-均值方法,对比DFFS方法与其他3种常用特征选择方法(DF,TC,TS)的聚类性能.实验一:当特征数量由6 000减少到1 047时,DF方法的聚类性能急剧下降,而DFFS方法则有提高,甚至当特征数量进一步减少到350时,DFFS方法也没有下降.实验二:在保持10%~2%的特征时,DFFS方法优于其他3种方法,特别是在只保留2%的特征时,DFFS方法的明显优于其他方法.