基于偏最小二乘的BP网络模型及其应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O213

基金项目:


Improvement and Application on Back Propagation Network Based on Partial Least-squares Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于BP网络模型具有拟合非线性数据的特性,提出一种基于非线性迭代偏最小二乘算法(NIPALS)的BP网络的构造策略,构造了新的PLS-BP网络模型,使BP网络减少迭代步数,提高学习效率.采用非线性迭代偏最小二乘算法预处理数据,将得到主成分数、自变量和因变量的主成分数的权重以及主成分间的关系矩阵B,以此用来确定BP网络的隐节点数和输入层、输出层的初始权值以及隐节点的关联系数.最后,进行仿真实验,并将它与PLS模型、标准的BP网络模型进行了比较,仿真结果表明,拟合和预测效果较好.

    Abstract:

    This paper proposes a novel BP network model based on nonlinear iterative partial least-squares algorithm which can fit nonlinear data. The novel BP network model can reduce iterative step number and advance learning effieieney. This paper pretreats data by nonlinear iterative partial least-squares algorithms. The weights initialization of input floor and output floor are set by applying the loading weights of dependent variable and cause variable, the member of hidden nodes are set by applying factor numbers of nonlinear iterative partial leastsquares algorithm, the connection co- efficient is set by applying the connection matrix B. Performances of the BP, PLS, and PLS-BP are analyzed and compared. The results show that the PLS-BP has better fitting and forecasting than BP and PLS.

    参考文献
    相似文献
    引证文献
引用本文

刘琼荪,张艳粉.基于偏最小二乘的BP网络模型及其应用[J].重庆大学学报,2007,30(7):148-151.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2007-03-30
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码