数值离散化中粒度熵与分类精度的相关性
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金 , 山东省自然科学基金


Correlation Between Granular Entropy and Classification Accuracy in Discretization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究离散化方案中断点数、粒度熵与分类精度之间的关系,证明了粒度熵随着断点数的增加而下降.设计了一种混合型的数值离散化算法来提供多种相容离散决策表.实验发现:粒度熵和分类精度之间的相关程度有时高于断点数和分类精度之间的相关程度.

    Abstract:

    This paper discusses the correlation between the number of cut points, granular entropy and classification accuracy in discretization. It is proven that granular entropy decreases if the number of cut points increases. A hybrid discretization algorithm is proposed to provide discretization schemes for studying these measures. The simulation experiments show that the absolute value of the correlation coefficient between number of cut points and classification accuracy is quite large, as it for granular entropy and classification accuracy. Sometimes, the correlation between the granular entropy and classification accuracy is smaller than that between the cut points and classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王立宏,孙立民,孟佳娜.数值离散化中粒度熵与分类精度的相关性[J].重庆大学学报,2008,31(1):57-.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-09-12
  • 最后修改日期:2007-09-12
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码