关联规则挖掘的一种多剪枝概念格方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金 , 安徽省自然科学基金


A method of multiple pruned concepts lattices for association rules mining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多数据源上关联规则挖掘方法,由于各数据节点间相互通信的候选项集数目过于庞大或者挖掘过程需要对数据库进行多次扫描,导致挖掘算法效率不高.研究剪枝概念格(pruned concept laffice,PCL)中概念与频繁项集表示关系,定义剪枝格上的导出频繁项集,设计了一个利用多剪枝概念格从多数据源上挖掘近似所有关联规则的算法UMPCL(union algorithm of multiple pruned concept lattice).利用一个频繁概念表示一些频繁项集以减少挖掘过程中产生的侯选项集数,使用与全局支持度相等的局部支持度对各子概念格进行剪枝,最后融合、剪枝各子剪枝格并提取全局关联规则.理论分析和实验验证表明该算法是有效的.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

徐勇,秦小麟.关联规则挖掘的一种多剪枝概念格方法[J].重庆大学学报,2008,31(4):451-456.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2007-12-05
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码