基于佳点集遗传算法的边缘检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(60772122);安徽省教育厅教育科研基金资助项目(2007JYXM547)


An edge detection method based on a good point set genetic algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高遗传算法应用于边缘检测的收敛速度,提出了一种基于佳点集遗传算法(GGA)的边缘检测方法。该方法利用佳点集理论构造交叉操作使得子代保留最能代表其家族性能的双亲共同基因以提高算法收敛速度。在用遗传算法进行边缘检测之前,将图像的灰度值特征空间转换为模糊熵特征空间, 然后运用模糊熵理论对图像进行相异性增强处理,滤去非边缘像素以便缩小解空间规模,为提高算法的收敛速度提供了另一个有效的途径。实验结果表明,所提出的图像边缘检测方法具有较好收敛效率,所检测出的图像边缘细节丰富、单边缘、定位准确。

    Abstract:

    In order to improve the convergence rate of genetic algorithms based on edge detection, a novel edge detection method based on a good point set genetic algorithm (GGA) was proposed. The proposed method designed the crossover operation with the theory of good point set in which the progeny inherits the common genes of the parents which represent its family so as to improve the convergence rate of the genetic algorithm. Furthermore, before the algorithm was used for edge detection, the feature space of the image grey level was transformed into the feature space of the fuzzy entropy. Dissimilarity enhancement processing next was applied to the image by using a fuzzy entropy theory to filter the nonedge pixels so as to reduce the scale of the solution domain. This approach offered another efficient way to improve the convergence rate. Experimental results show the proposed algorithm performs very well in terms of convergence rate. The detected edge image is well localized, thin, and robustly resistant to noise.

    参考文献
    相似文献
    引证文献
引用本文

郭玉堂,罗斌,吕皖丽.基于佳点集遗传算法的边缘检测[J].重庆大学学报,2008,31(8):902-907.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码