It is necessary to predict electromagnetic compatibility (EMC) for electronic equipment and systems. We proposed a fast EMC prediction approach via artificial neural networks (ANN). By choosing relevant electromagnetic interference parameters as the input prediction features, a back propagation (BP) neural network was used to construct the mapping between the input prediction features and the electromagnetic disturbance response of the sensitive system. The EMC fast prediction BP model was trained and tested by sample sets generated using an electromagnetic computational method. We used this method to predict the crosstalk coupling between two wires. The experimental results show the effectiveness of the proposed method.