Abstract:Based on evaluation of the basic principle and error of the modal pushover analysis method, an improved method is suggested by selecting rational values of stiffness reduction parameters of beams and columns in a reinforced concrete frame corresponding to the global target displacement ductility ratio. A 10story and a 16story reinforced concrete plane frame are designed as examples to investigate the influence of higher modes. Nonlinear seismic responses of the two frames under excitations of seven earthquake waves of varying earthquake intensities are selected to be the reference points for a comparison study. The changing rules of the results of modal pushover analysis and modified modal pushover analysis with respect to various natural fundamental periods and different earthquake intensities are studied. Research results show that the error of modal pushover analysis and modified modal pushover analysis will not increase with a larger fundamental period, which implies that modal pushover analysis can cover the effect of higher modes reasonably. When the degree of nonlinearity of the structure is more severe, the modified modal pushover analysis we suggest could decrease the error of normal modal pushover analysis to a certain extent.