应用独立分量分析的胎儿心电信号提取
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市自然科学基金资助项目(CST2004BB5061)


Extracting a fetal electrocardiogram based on independent component analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对独立分量分析(independent component analysis, ICA)的基本生成模型,在采用负熵的快速定点ICA算法的基础上,应用渐近正交化的FastICA算法,对3导从孕妇腹部测得的含有孕妇及其胎儿心电分量的观测信号进行了有效的分离,提取出胎儿心电分量;通过调用Matlab小波消噪程序,对分离所得的胎儿心电分量用db2小波对其做8层分解,获取默认软阈值,消噪处理。结果表明,渐近正交化的FastICA算法收敛速度快,只经过7、3、2次的迭代,便将3个源分量分离出来;结合小波阈值消噪,将分离后胎儿心电中的干扰进一步去除。

    Abstract:

    Based on the basic generation model for the independent component analysis (ICA) and the fixedpoint FastICA algorithm using negentropy, three observed signals containing maternal electrocardiogram (MECG) and fetal electrocardiogram (FECG) components obtained from abdomen of a pregnant woman are successfully separated by using the FastICA algorithm with progressive orthogonalization, and the FECG is extracted. By invoking the wavelet denoising program in Matlab, the extracted FECG is decomposed to 8 levels with db2 wavelet to obtain the default soft threshold for denoising. The results show that the FastICA algorithm with progressive orthogonalization performed fast convergence. The three source components were extracted with only seven, three, and two iterations, respectively. The noise in the extracted FECG can be eliminated using wavelet denoising.

    参考文献
    相似文献
    引证文献
引用本文

蔡坤宝,冀志华.应用独立分量分析的胎儿心电信号提取[J].重庆大学学报,2009,32(3):332-336.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码