GIS局部放电超高频信号复小波的模式识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究计划(973计划)(2009CB724506);国家自然科学基金资助项目(50777070)


Classification of ultra high frequency partial discharge signalsin gas insulated switchgear based on complex wavelet transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了对模拟气体绝缘组合电器(gas insulated switchgear, GIS)的4种绝缘缺陷产生超高频(ultra high frequency, UHF)局部放电(partial discharge, PD)数据和波形进行识别,用复小波变换对UHF PD信号进行分解,利用均值、方差、偏斜度、陡峭度、能量共5个统计参量对复小波变换的各尺度系数进行量化,构造出能够描述UHF PD信号特征的候选特征子集,引入衡量特征分类能力的分离度指标J作为特征量降维的评判指标,从60个特征量中选取了5个具有较

    Abstract:

    In order to classify the ultrahighfrequency (UHF) partial discharge (PD) signals resulting from four types of insulation defects in gas insulated switchgear (GIS), the complex wavelet transform is applied to extract features of UHF PD signals. Five statistical parameters including mean, variance, kurtosis, skewness and energy are used to quantize the scaling coefficients of the complex wavelet transform and describe the feature subsets of UHF PD signals.A critical index J is defined to select features according to their classification performance. Using the J criterion, five optimal features are selected from sixty UHF PD features and taken as the input of radial basis function neural network. The classification results show that the information of real part and image part of complex wavelet coefficients indicates the characteristics of UHF PD singles and the recognition effect is pretty good. To use db4 complex wavelet can get the best classification performance.

    参考文献
    相似文献
    引证文献
引用本文

唐炬,谢颜斌,周倩. GIS局部放电超高频信号复小波的模式识别[J].重庆大学学报,2009,32(9):1059-1064.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-05-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码